Log in

SCID and Other Inborn Errors of Immunity with Low TRECs — the Brazilian Experience

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Severe combined immunodeficiency, SCID, is a pediatric emergency that represents the most critical group of inborn errors of immunity (IEI). Affected infants present with early onset life-threatening infections due to absent or non-functional T cells. Without early diagnosis and curative treatment, most die in early infancy. As most affected infants appear healthy at birth, newborn screening (NBS) is essential to identify and treat patients before the onset of symptoms. Here, we report 47 Brazilian patients investigated between 2009 and 2020 for SCID due to either a positive family history and/or clinical impression and low TRECs. Based on clinical presentation, laboratory finding, and genetic information, 24 patients were diagnosed as typical SCID, 14 as leaky SCID, and 6 as Omenn syndrome; 2 patients had non-SCID IEI, and 1 remained undefined. Disease onset median age was 2 months, but at the time of diagnosis and treatment, median ages were 6.5 and 11.5 months, respectively, revealing considerable delay which affected negatively treatment success. While overall survival was 51.1%, only 66.7% (30/45) lived long enough to undergo hematopoietic stem-cell transplantation, which was successful in 70% of cases. Forty-three of 47 (91.5%) patients underwent genetic testing, with a 65.1% success rate. Even though our patients did not come from the NBS programs, the diagnosis of SCID improved in Brazil during the pilot programs, likely due to improved medical education. However, we estimate that at least 80% of SCID cases are still missed. NBS-SCID started to be universally implemented in the city of São Paulo in May 2021, and it is our hope that other cities will follow, leading to early diagnosis and higher survival of SCID patients in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data generated during the current study are available from the corresponding author on reasonable request.

References

  1. Chinn IK, Shearer WT. Severe combined immunodeficiency disorders. Immunol Allergy Clin N Am. 2015;35:671–94. https://doi.org/10.1016/j.iac.2015.07.002.

    Article  Google Scholar 

  2. Buelow BJ, Verbsky JW, Routes JM. Newborn screening for SCID: lessons learned. Expert Rev Hematol. 2016;9(6):579–84. https://doi.org/10.1016/j.jaci.2020.10.020.

    Article  CAS  PubMed  Google Scholar 

  3. Pöyhönen L, Bustamante J, Casanova JL, Jouanguy E, Zhang Q. Life-threatening infections due to live-attenuated vaccines: early manifestations of inborn errors of immunity. J Clin Immunol. 2019;39(4):376–90. https://doi.org/10.1007/s10875-019-00642-3. Erratum in: J Clin Immunol. 2019 Jul;39(5):527. 10.1007/s10875-019-00653-0.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clinic Immunol. 2015;136:1186–205. https://doi.org/10.1016/j.jaci.2015.04.049.

    Article  Google Scholar 

  5. van der Burg M, Gennery AR. Educational paper. The expanding clinical and immunological spectrum of severe combined immunodeficiency. Eur J Pediatr. 2011;170:561–71. https://doi.org/10.1007/s00431-011-1452-3.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies expert committee. J Clin Immunol. 2020;40(1):24–64. https://doi.org/10.1007/s10875-019-00737-x.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM. The ever-increasing array of novel inborn errors of immunity: an interim update by the IUIS Committee. J Clin Immunol. 2021;41(3):666–79. https://doi.org/10.1007/s10875-021-00980-1.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shearer WT, Dunn E, Notarangelo LD, Dvorak CC, Puck JM, Logan BR, et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol. 2014;133:1092–8. https://doi.org/10.1016/j.jaci.2013.09.044.

    Article  PubMed  Google Scholar 

  9. McWilliams L, Railey MD, Buckley R. Positive family history, infection, low absolute lymphocyte count (ALC), and absent thymic shadow: diagnostic clues for all molecular forms of severe combined immunodeficiency. J Allergy Clin Immunol Pract. 2015;3:585–91. https://doi.org/10.1016/j.jaip.2015.01.026.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fischer A, Notarangelo LD, Nelen B, Cavazzana M, Puck JM. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers. 2015;1:15061. https://doi.org/10.1038/nrdp.2015.61.

    Article  PubMed  Google Scholar 

  11. Dvorak CC, Haddad E, Buckley RH, Cowan MJ, Logan B, Griffith LM, et al. The genetic landscape of severe combined immunodeficiency in the United States and Canada in the current era (2010–2018). J Allergy Clin Immunol. 2019;143(1):405–7. https://doi.org/10.1016/j.jaci.2018.08.027.

    Article  PubMed  Google Scholar 

  12. Gaspar HB, Qasim W, Davies EG, Rao K, Amrolia PJ, Veys P. How I treat severe combined immunodeficiency. Blood. 2013;122:3749–58. https://doi.org/10.1182/blood-2013-02-380105.

    Article  CAS  PubMed  Google Scholar 

  13. Dvorak CC, Cowan MJ, Logan BR, Notarangelo LD, Griffith LM, Puck JM, et al. The natural history of children with severe combined immunodeficiency: baseline features of the first fifty patients of the primary immune deficiency treatment consortium prospective study 6901. J Clin Immunol. 2013;33:1156–64. https://doi.org/10.1007/s10875-013-9917-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fernandes JF, Nichele S, Daudt LE, Tavares RB, Seber A, Kerbauy FR, et al. Transplantation of hematopoietic stem cells for primary immunodeficiencies in Brazil: challenges in treating rare diseases in develo** countries. J Clin Immunol. 2018;38:917–26. https://doi.org/10.1007/s10875-018-0564-1.

    Article  PubMed  Google Scholar 

  15. Pai SY, Logan BR, Griffith LM, Buckley RH, Parrott RE, Dvorak CC, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;371:434–46. https://doi.org/10.1056/NEJMoa1401177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kwan A, Puck J. History and current status of newborn screening for severe combined immunodeficiency. Semin Perinatol. 2015;39:194–205. https://doi.org/10.1053/j.semperi.2015.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Thomas C, Durand-Zaleski I, Frenkiel J, Mirallie S, Leger A, Cheillan D, et al. Clinical and economic aspects of newborn screening for severe combined immunodeficiency: DEPISTREC study results. Clin Immunol. 2019;202:33–9. https://doi.org/10.1016/j.clim.2019.03.012.

    Article  CAS  PubMed  Google Scholar 

  18. Buckley RH. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Ann Rev Immunol. 2004;22:625–55. https://doi.org/10.1146/annurev.immunol.22.012703.104614.

    Article  CAS  Google Scholar 

  19. Mazzucchelli JT, Bonfim C, Castro GG, Condino-Neto A, Costa NMX, Cunha L, et al. Severe combined immunodeficiency in Brazil: management, prognosis, and BCG-associated complications. J Investig Allergol Clin Immunol. 2014;24(3):184–91.

    CAS  PubMed  Google Scholar 

  20. Kanegae MPP, Barreiros LA, Mazzucchelli JTL, Hadachi SM, Guilhoto LMFF, Acquesta AL, et al. Neonatal screening for severe combined immunodeficiency in Brazil. J Pediatr (Rio). 2016;92:374–80. https://doi.org/10.1016/j.jped.2015.10.006.

    Article  Google Scholar 

  21. Kanegae MPP, Barreiros LA, Sousa JL, Brito MAS, Oliveira-Junior EB, Soares LP, et al. Newborn screening for severe combined immunodeficiencies using TRECs and KRECs: second pilot study in Brazil. Rev Paul Pediatr. 2017;35(1):25–32. https://doi.org/10.1590/1984-0462/;2017;35;1;00013.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Borte S, von Dobeln U, Fasth A, Wang N, Janzi M, Winiarski J, et al. Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR. Blood. 2012;119:2552–5. https://doi.org/10.1182/blood-2011-08-371021.

    Article  CAS  PubMed  Google Scholar 

  23. Moraes-Pinto MI, Ono E, Santos-Valente EC, Almeida LC, de Andrade PR, Dinelli MIS, et al. Lymphocyte subsets in human immunodeficiency virus-unexposed Brazilian individuals from birth to adulthood. Mem Inst Oswaldo Cruz. 2014;109(8):989–98. https://doi.org/10.1590/0074-0276140182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Griffith LM, Cowan MJ, Notarangelo LD, Puck JM, Buckley RH, Candotti F, et al. Improving cellular therapy for primary immune deficiency diseases: recognition, diagnosis, and management. J Allergy Clin Immunol. 2009;124(6):1152-60.e12. https://doi.org/10.1016/j.jaci.2009.10.022.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fujimura MD. Níveis séricos das subclasses de imunoglobulina g em crianças normais e nefróticas. 1991. PhD thesis, Universidade de São Paulo, São Paulo.

  26. Giliani S, Mori L, De Saint Basile G, Le Deist F, Rodriguez-Perez C, Forino C, et al. Interleukin-7 receptor α (IL-7Rα) deficiency: cellular and molecular bases. Analysis of clinical, immunological, and molecular features in 16 novel patients. Immunol Rev. 2005;203:110–26. https://doi.org/10.1111/j.0105-2896.2005.00234.x.

    Article  CAS  PubMed  Google Scholar 

  27. Giliani S, Bonfim C, de Saint BG, Lanzi G, Brousse N, Koliski A, et al. Omenn syndrome in an infant with IL7RA gene mutation. J Pediatrics. 2006;8(2):272–4. https://doi.org/10.1016/j.jpeds.2005.10.004.

    Article  CAS  Google Scholar 

  28. Butte MJ, Haines C, Bonilla FA, Puck J. IL-7 receptor deficient SCID with a unique intronic mutation and post-transplant autoimmunity due to chronic GVHD. Clin Immunol. 2007;125(2):159–64. https://doi.org/10.1016/j.clim.2007.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Zavialov AV, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med. 2014;370(10):911–20. https://doi.org/10.1056/NEJMoa1307361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gibson KM, Morishita KA, Dancey P, Moorhead P, Drogemoller B, Han X, et al. Identification of novel adenosine deaminase 2 gene variants and varied clinical phenotype in pediatric vasculitis. Arthritis Rheumatol. 2019;71(10):1747–55. https://doi.org/10.1002/art.40913.

    Article  CAS  PubMed  Google Scholar 

  31. Zervou MI, Goulielmos GN, Matalliotakis M, Matalliotaki C, Spandidos DA, Eliopoulos E. Role of adenosine deaminase 2 gene variants in pediatric deficiency of adenosine deaminase 2: a structural biological approach. Mol Med Rep. 2020;21(2):876–82. https://doi.org/10.3892/mmr.2019.10862.

    Article  CAS  PubMed  Google Scholar 

  32. Schwarz K, Gauss GH, Ludwig L, Pannicke U, Li Z, Lindner D, et al. RAG mutations in human B cell-negative SCID. Science. 1996;274:97–9. https://doi.org/10.1126/science.274.5284.97.

    Article  CAS  PubMed  Google Scholar 

  33. Safaei S, Pourpak Z, Moin M, Houshmand M. IL7R and RAG1/2 genes mutations/polymorphisms in patients SCID. Iran J Allergy Asthma Immunol. 2011;10(2):129–32.

    CAS  PubMed  Google Scholar 

  34. Barreiros LA, Segundo GRS, Grumach AS, Roxo-Júniot P, Torgerson TR, Ochs HD, et al. A Novel Homozygous JAK3 Mutation Leading to T-B+NK- SCID in Two Brazilian Patients. Front Pediatr. 2018;6:230. https://doi.org/10.3389/fped.2018.00230.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Moshous D, Callebaut I, Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human Severe Combined Immunodeficiency. Cell. 2001;105:177–86. https://doi.org/10.1016/s0092-8674(01)00309-9.

    Article  CAS  PubMed  Google Scholar 

  36. Felgentreff K, Lee YN, Frugoni F, Du L, van der Burg M, Giliani S, et al. Functional analysis of naturally occurring DCLRE1C mutations and correlation with the clinical phenotype of ARTEMIS deficiency. J Allergy Clin Immunol. 2015;136(140–150):e147. https://doi.org/10.1016/j.jaci.2015.03.005.

    Article  CAS  Google Scholar 

  37. Sharfe N, Shahar M, Roifman CM. An interleukin-2 receptor gamma chain mutation with normal thymus morphology. J Clin Invest. 1997;100(12):3036–43. https://doi.org/10.1172/JCI119858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mella P, Imberti L, Brugnoni D, Pirovano S, Candotti F, Mazzolari E, et al. Development of autologous T lymphocytes in two males with X-linked severe combined immune deficiency: molecular and cellular characterization. Clin Immunol. 2000;95(1):39–50. https://doi.org/10.1006/clim.2000.4842.

    Article  CAS  PubMed  Google Scholar 

  39. Somech R, Roifman CM. Mutation analysis should be performed to rule out gammac deficiency in children with functional severe combined immune deficiency despite apparently normal immunologic tests. J Pediatr. 2005;147(4):555–7. https://doi.org/10.1016/j.jpeds.2005.05.010.

    Article  CAS  PubMed  Google Scholar 

  40. Shadur B, Asherie N, Newburger PE, Stepensky P. How we approach: Severe congenital neutropenia and myelofibrosis due to mutations in VPS45. Pediatr Blood Cancer. 2019;66(1):e27473. https://doi.org/10.1002/pbc.27473.

    Article  PubMed  Google Scholar 

  41. Bayer DK, Martinez CA, Sorte HS, Forbes LR, Demmler-Harrison GJ, Hanson IC, et al. Vaccine-associated varicella and rubella infections in severe combined immunodeficiency with isolated CD4 lymphocytopenia and mutations in IL7R detected by tandem whole exome sequencing and chromosomal microarray. Clin Exp Immunol. 2014;178(3):459–69. https://doi.org/10.1111/cei.12421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zago CA, Jacob CMA, Diniz MA, Lovisolo SM, Zerbini MCN, Dorna M, et al. Autoimmune manifestations in SCID due to IL7R mutations: Omenn syndrome and cytopenias. Human Immunol. 2014;75(7):662–6. https://doi.org/10.1016/j.humimm.2014.04.006.

    Article  CAS  Google Scholar 

  43. Villa A, Santagata S, Bozzi F, Imberti L, Notarangelo LD. Partial V(D)J recombination activity leads to Omenn syndrome. Cell. 1998;93(5):885–96. https://doi.org/10.1016/s0092-8674(00)81448-8.

    Article  CAS  PubMed  Google Scholar 

  44. Corneo B, Moshous D, Güngör T, Wulffraat N, Philippet P, Deits FL, et al. Identical mutations in RAG1 or RAG2 genes leading to defective V(D)J recombinase activity can cause either T-B-severe combined immune deficiency or Omenn syndrome. Blood. 2001;97(9):2772–6. https://doi.org/10.1182/blood.v97.9.2772.

    Article  CAS  PubMed  Google Scholar 

  45. Lee YN, Frugoni F, Dobbs K, Walter JE, Giliani S, Gennery AR, et al. A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency. J Allergy Clin Immunol. 2014;133(4):1099–108. https://doi.org/10.1016/j.jaci.2013.10.007.

    Article  CAS  PubMed  Google Scholar 

  46. Luk ADW, Lee PP, Mao H, Chan KW, Chen XY, Chen TX, et al. Family History of Early Infant Death Correlates with Earlier Age at Diagnosis But Not Shorter Time to Diagnosis for Severe Combined Immunodeficiency. Front Immunol. 2017;12(8):808. https://doi.org/10.3389/fimmu.2017.00808.

    Article  CAS  Google Scholar 

  47. Lim CK, Abolhassani H, Appelberg SK, Sundin M, Hammarstrom L. IL2RG hypomorphic mutation: identification of a novel pathogenic mutation in exon 8 and a review of the literature. Alergy Asthma Clin Immunol. 2019;5:2. https://doi.org/10.1186/s13223-018-0317-y.

    Article  Google Scholar 

  48. IJspeert H, Warris A, van der Flier M, Reisli I, Keles S, Chishimba S, et al. Clinical spectrum of LIG4 deficiency is broadened with severe dysmaturity, primordial dwarfism, and neurological abnormalities. Human Mutation. 2013;34(12):1611–4. https://doi.org/10.1002/humu.22436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Markert ML, Finkel BD, McLaughlin TM, Watson TJ, Collard HR, McMahon CP, et al. Mutations in purine nucleoside phosphorylase deficiency. Hum Mutat. 1997;9(2):118–21. https://doi.org/10.1002/(SICI)1098-1004(1997)9:2%3c118::AID-HUMU3%3e3.0.CO;2-5.

    Article  CAS  PubMed  Google Scholar 

  50. Atasoy U, Norby-Slycord J, Markert ML. A missense mutation in exon 4 of the human adenosine deaminase gene causes severe combined immunodeficiency. Hum Mol Genet. 1993;2(8):1307–8. https://doi.org/10.1093/hmg/2.8.1307.

    Article  CAS  PubMed  Google Scholar 

  51. Puck JM, Pepper AE, Henthorn PS, Candotti F, Isakov J, Whitwam T, et al. Mutation analysis of IL2RG in human X-linked severe combined immunodeficiency. Blood. 1997;89(6):1968–77.

    CAS  PubMed  Google Scholar 

  52. Richards S, Aziz N, Bale S, Bixk D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Puck JM, SCID Newborn Screening Working Group. Population-based newborn screening for severe combined immunodeficiency: steps toward implementation. J Allergy Clin Immunol. 2007;20(4):760–8. https://doi.org/10.1016/j.jaci.2007.08.043.

    Article  Google Scholar 

  54. Fazlollahi MR, Pourpak Z, Hamidiehet AA, Movahedi M, Houshmand M, Badalzadeh M, et al. Clinical, laboratory, and molecular findings for 63 patients with severe combined immunodeficiency: a decade’s experience. J Investig Allergol Clin Immunol. 2017;27(5):299–304. https://doi.org/10.18176/jiaci.0147.

    Article  CAS  PubMed  Google Scholar 

  55. Cirillo E, Cancrini C, Azzari C, Martino S, Martire B, Pession A, et al. Clinical, immunological, and molecular features of typical and atypical severe combined immunodeficiency: report of the Italian Primary Immunodeficiency Network. Front Immunol. 2019;10:1908. https://doi.org/10.3389/fimmu.2019.01908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shahbazi Z, Yazdani R, Shahkarami S, Shahbazi S, Hamid M, Sadeghi-Shabestari M, et al. Genetic mutations and immunological features of severe combined immunodeficiency patients in Iran. Immunol Lett. 2019;216:70–8. https://doi.org/10.1016/j.imlet.2019.10.001.

    Article  CAS  PubMed  Google Scholar 

  57. Benhsaien I, Ailal F, El Bakkouri J, Jeddane, Ouair H, Admou B, et al. Clinical and immunological features of 96 Moroccan children with SCID phenotype: two decades’ experience. J Clin Immunol. 2021;41(3):631–8. https://doi.org/10.1007/s10875-020-00960-x.

    Article  PubMed  Google Scholar 

  58. Marciano BE, Huang CY, Joshi G, Rezaei N, Carvalho BC, Allwood Z, et al. BCG vaccination in SCID patients: complications, risks and vaccination policies. J Allergy Clin Immunol. 2014;133:1134–41. https://doi.org/10.1016/j.jaci.2014.02.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mazzucchelli J, Aranda CS, Gouveia-Pereira M, Barreiros LA, Costa Carvalho BT, Condino-Neto A, et al. The panorama in diagnoses of severe combined immunodeficiency begins to change in Brazil. J Allergy Clin Immunol. 2020;145(3):1029. https://doi.org/10.1016/j.jaci.2019.12.895.

    Article  PubMed  Google Scholar 

  60. Buckley RH, Schiff RI, Schiff SE, Markert L, Willians LW, Harville TO, et al. Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr. 1997;130:378–87. https://doi.org/10.1016/s0022-3476(97)70199-9.

    Article  CAS  PubMed  Google Scholar 

  61. Rozmus J, Junker A, Thibodeau ML, Grenier D, Turvey SE, Embree J, et al. Severe combined immunodeficiency (SCID) in Canadian children: a national surveillance study. J Clin Immunol. 2013;33:1310–6. https://doi.org/10.1007/s10875-013-9952-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Edgar JD, Buckland M, Guzman D, Conlon NP, Knerr V, Bangd C, et al. The United Kingdom Primary Immune Deficiency (UKPID) registry: report of the first 4 years’ activity 2008–2012. Clin Exp Immunol. 2014;175(1):68–78. https://doi.org/10.1111/cei.12172.

    Article  CAS  PubMed  Google Scholar 

  63. Aluri J, Desai M, Gupta M, Dalvi A, Terance A, Rosenzweig SD, et al. Clinical, immunological, and molecular findings in 57 patients with severe combined immunodeficiency (SCID) from India. Front Immunol. 2019;10:23. https://doi.org/10.3389/fimmu.2019.00023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee PP, Chan KW, Chen TX, Jiang LP, Wang XC, Zeng HS, et al. Molecular diagnosis of severe combined immunodeficiency—identification of IL2RG, JAK3, IL7R, DCLRE1C, RAG1, and RAG2 mutations in a cohort of Chinese and Southeast Asian children. J Clin Immunol. 2011;31(2):281–96. https://doi.org/10.1007/s10875-010-9489-z.

    Article  CAS  PubMed  Google Scholar 

  65. Michos A, Tzanoudaki M, Villa A, Giliani S, Chrousos G, Kanariou M. Severe combined immunodeficiency in Greek children over a 20-year period: rarity of γ c-chain deficiency (X-Linked) type. J Clin Immunol. 2011;31(5):778–83. https://doi.org/10.1007/s10875-011-9564-0.

    Article  PubMed  Google Scholar 

  66. Dantas EO, Aranda CS, Rêgo Silva AM, Tavares FS, Ferreira JFS, Coelho MAQ, et al. Doctor’s awareness concerning primary immunodeficiencies in Brazil. Allergol Immunopathol (Madr). 2015;43(3):272–8. https://doi.org/10.1016/j.aller.2014.09.002.

    Article  CAS  Google Scholar 

  67. Espinosa-Rosales FJ, Condino-Neto A, Franco JL, Sorensen RU. Into action: improving access to optimum care for all primary immunodeficiency patients. J Clin Immunol. 2016;36:415–7. https://doi.org/10.1007/s10875-016-0277-2.

    Article  PubMed  Google Scholar 

  68. Mauracher AA, Pagliarulo F, Faes L, Vavassori S, Gungor T, Bachmann LM, et al. Causes of low neonatal T-cell receptor excision circles: a systematic review. J Allergy Clin Immunol Pract. 2017;5(5):1457–60. e22. https://doi.org/10.1016/j.jaip.2017.02.009

  69. Buckley RH. Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: long term outcomes. Immunol Res. 2011;49(1–3):25–43. https://doi.org/10.1007/s12026-010-8191-9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Antoine C, Müller S, Cant A, Cavazzana-Calvo M, Veys P, Vossen J, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet. 2003;361(9357):553–60. https://doi.org/10.1016/s0140-6736(03)12513-5.

    Article  PubMed  Google Scholar 

  71. Freire-Maia N. Casamentos consangüíneos no Brasil [Consanguinity marriages in Brazil]. Rev Bras Biol. 1990;50(4):863–6 (Portuguese).

    CAS  PubMed  Google Scholar 

  72. Santos S, Kok F, Weller M, de Paiva FR, Otto PA. Inbreeding levels in Northeast Brazil: strategies for the prospecting of new genetic disorders. Genet Mol Biol. 2010;33(2):220–3. https://doi.org/10.1590/S1415-47572010005000020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Amatuni GS, Currier RJ, Church JA, Bishop T, Grimbacher E, Nguyen AAC et al. Newborn screening for severe combined immunodeficiency and T-cell Lymphopenia in California, 2010–2017. Pediatrics. 2019; 143. https://doi.org/10.1542/peds.2018-2300

  74. Kwan A, Abraham RS, Currier RA, Bower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312:729–38. https://doi.org/10.1001/jama.2014.9132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Picard C, Moshous D, Fischer A. The Genetic and Molecular Basis of Severe Combined Immunodeficiency. Curr Pediatr Rep. 2015;3(1):22–33. https://doi.org/10.1007/s40124-014-0070-8.

    Article  Google Scholar 

  76. Yeganeh M, Heidarzade M, Pourpak Z, Parvaneh N, Rezaei N, Gharagozlou M, et al. Severe combined immunodeficiency: a cohort of 40 patients. Pediatr Allergy Immunol. 2008;19(4):303–6. https://doi.org/10.1111/j.1399-3038.2007.00647.x.

    Article  PubMed  Google Scholar 

  77. Hawary RE, Meshaal S, Maraucher AA, Optiz L, Elaziz DA, Lofty S, et al. Whole exome sequencing of T-B+ severe combined immunodeficiency Egyptian infants, JAK3 predominance and novel variants. Clin Exp Immunol. 2021;203(3):448–57. https://doi.org/10.1111/cei.13536.

    Article  CAS  PubMed  Google Scholar 

  78. Meyts I, Aksentijevich I. Deficiency of Adenosine Deaminase 2 (DADA2): Updates on the phenotype, genetics, pathogenesis, and treatment. J Clin Immunol. 2018. https://doi.org/10.1007/s10875-018-0525-8.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stepensky P, Saada A, Cowan M, Tabib A, Fischer U, Berkun Y, et al. The Thr224Asn mutation in the VPS45 gene is associated with congenital neutropenia and primary myelofibrosis of infancy. Blood. 2013;121(25):5078–87. https://doi.org/10.1182/blood-2012-12-475566.

    Article  CAS  PubMed  Google Scholar 

  80. Vilboux T, Lev A, Malicdan MCV, Simon AJ, Jarvinen P, Racek T, et al. A congenital neutrophil defect syndrome associated with mutations in VPS45. N Engl J Med. 2013;369:54–65. https://doi.org/10.1056/NEJMoa1301296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gennery AR, Slatter MA, Grandin L, Taupin P, Cant AJ, Veys P, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010;126(3):602-10.e1-11. https://doi.org/10.1016/j.jaci.2010.06.015.

    Article  PubMed  Google Scholar 

  82. Chan A, Scalchunes C, Boyle M, Puck J. Early vs delayed diagnosis of severe combined immunodeficiency: a family perspective survey. Clin Immunol. 2011;138:3–8. https://doi.org/10.1016/j.clim.2010.09.010.

    Article  CAS  PubMed  Google Scholar 

  83. Nicholas S, Krance R, Hanson IC, Mamlok R, Roifman C, Shearer W. Early versus delayed diagnosis of SCID: triumph versus tragedy. Clin Immunol. 2011;139:360–2. https://doi.org/10.1016/j.clim.2011.03.010.

    Article  CAS  PubMed  Google Scholar 

  84. Gardulf A, Winiarski J, Thorin M, Arnlind MH, von Dobeln U, Hammarstrom L. Costs associated with treatment of severe combined immunodeficiency (SCID)—rationale for newborn screening in Sweden. J Allergy Clin Immunol. 2017;139:1713–6. https://doi.org/10.1016/j.jaci.2016.10.043.

    Article  PubMed  Google Scholar 

  85. DATASUS, 2019, Ministério da Saúde do Brasil. [accessed January 21 2021] http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinasc/cnv/nvuf.def

Download references

Acknowledgements

The authors would like to thank the patients, their families, and all healthcare professionals that made this study possible. We specially acknowledge the support of the Jeffrey Modell Foundation, which was instrumental to the development of this work. We thank Dr Jean Laurent Casanova’s group for genetic annotation assistance, Dr. Peter Newburger for information about the VPS45 variant, Dr Juliana F Fernandes for patient transplantation information, and Dr. Gustavo B Ferreira for statistical support. Lastly, we would like to acknowledge the relevance of the work of Dr. Beatriz Tavares Costa-Carvalho (in memorian) for the present work and for patients suffering of inborn errors of immunity.

Funding

Jeffrey Modell Foundation (LAB and ACN), Fundação de Amparo à Pesquisa do Estado de São Paulo — FAPESP (grants 2016/22158–3 for ACN and 2018/09407–0 for LAB), Centro Nacional de Desenvolvimento Científico e Tecnológico (CNPq 301299/2018–8—ACN), Brazilian Ministry of Health grant PRONAS/PDC (25000.077928/2015–06—ACN and LAB), Investigator-Initiated Research grant from Takeda Pharma Ltda (no. IISR-2020–103243—ACN), Robert A. Good Endowment, University of South Florida (JEW).

Author information

Authors and Affiliations

Authors

Contributions

Lucila Akune Barreiros, Marilia Pylles Patto Kanegae, and Antonio Condino-Neto contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Lucila Akune Barreiros, Jusley Lira Sousa, Christoph Geier, Alexander Leiss-Piller, Marilia Pylles Patto Kanegae, and Tábata Takahashi França. The first draft of the manuscript was written by Lucila Akune Barreiros, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Antonio Condino-Neto.

Ethics declarations

Ethics Approval

This study was approved by the ethics committee of the Institute of Biomedical Sciences of the University of São Paulo (CAAE 54324416.5.000.5467).

Consent to Participate and Consent to Publish

Informed consent was given by either parent or another family member to allow for sample collection and data publication of all patients.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Beatriz Tavares Costa-Carvalho, who passed away during the presentation of this study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 61 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreiros, L.A., Sousa, J.L., Geier, C. et al. SCID and Other Inborn Errors of Immunity with Low TRECs — the Brazilian Experience. J Clin Immunol 42, 1171–1192 (2022). https://doi.org/10.1007/s10875-022-01275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-022-01275-9

Keywords

Navigation