Log in

Two New Proton Transfer Salts of Benzo[d]thiazol-2-amine with Different Aromatic Acids

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two new proton transfer salts (HABT)+(SA) (1) and (HABT)+2(ADSA)2−·2H2O (2) were synthesized from the reaction of benzo[d]thiazol-2-amine (2-aminobenzothiazole) (ABT) with 2-hydroxybenzoic acid (salicylic acid) (HSA) and 2-aminobenzene-1,4-disulfonic acid (H2ADSA), respectively. The molecular structures of these salts were carried out by elemental analysis, X-ray diffraction crystallography, FTIR and UV–Vis techniques Single-crystal X-ray analysis of the compounds revealed proton transfer from acidic moieties to basic moieties to form salts with intermolecular hydrogen bond motifs R22(8) for 1 and R33(10) for 2. The intramolecular hydrogen bond creates the cyclic S(6) motif in both structures (1 and 2). For salt 1, crystallization took place in the P2(1)/c space group of the monoclinic system, and for salt 2 in the P-1 space group of the triclinic system. The antibacterial and antifungal properties of the compounds are assayed against various Gram positive bacteria {Bacillus subtilis, Listeria monocytogenes (ATCC 7644), Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (NRRL B-767)}, Gram negative bacteria {Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853)} and fungus {Candida albicans (F89)}. Minimum inhibitory concentrations (MIC) of synthesized salts were compared with antibacterial (levofloxacin cefepime, vancomycin) and antifungal (Fluconazole) reference compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

CCDC 2178935 (1) and CCDC 2178938 (2) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk (the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax (+ 44 1123 336 033; e.mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk). The authors declare that all other data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Henary M, Paranjpe S, Owens EA (2013) Substituted benzothiazoles: synthesis and medicinal characteristics. Heterocycl Commun 19(2):89–99. https://doi.org/10.1515/hc-2013-0026

    Article  CAS  Google Scholar 

  2. Cano NH, Ballari MS, Lopez AG, Santiago AN (2015) New synthesis and biological evaluation of benzothiazole derivates as antifungal agents. J Agric Food Chem 63:3681–3686. https://doi.org/10.1021/acs.jafc.5b00150

    Article  CAS  Google Scholar 

  3. Soni B, Ranawat MS, Sharma R, Bhandari A, Sharma S (2010) Synthesis and evaluation of some new benzothiazole derivatives as potential antimicrobial agents. Eur J Med Chem 45:2938–2942. https://doi.org/10.1016/j.ejmech.2010.03.019

    Article  CAS  PubMed  Google Scholar 

  4. Singh M, Singh SK, Gangwar M, Nath G, Singh SK (2014) Design, synthesis and mode of action of some benzothiazole derivatives bearing an amide moiety as antibacterial agents. RSC Adv 36(4):19013–19023. https://doi.org/10.1039/C4RA02649G

    Article  Google Scholar 

  5. Huang ST, Hsei IJ, Chen C (2006) Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles. Bioorg Med Chem 14:6106–6119. https://doi.org/10.1016/j.bmc.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  6. Keri RS, Patil MR, Patil SA, Budagumpi S (2015) A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur J Med Chem 89:207–251. https://doi.org/10.1016/j.ejmech.2014.10.059

    Article  CAS  PubMed  Google Scholar 

  7. Gill RK, Rawal RK, Bariwal J (2015) Recent advances in the chemistry and biology of benzothiazoles. Arch Pharm 348:155–178. https://doi.org/10.1002/ardp.201400340

    Article  CAS  Google Scholar 

  8. Le Bozec L, Moody CJ (2009) Naturally occurring nitrogen–sulfur compounds. The benzothiazole alkaloids. Aust J Chem 62:639–647

    Article  Google Scholar 

  9. Bhoi MN, Borad MA, Patel HD (2014) Synthetic strategies for fused benzothiazoles: past, present, and future. Synth Commun 44(17):2427–2457. https://doi.org/10.1080/00397911.2014.907426

    Article  CAS  Google Scholar 

  10. Kresge AJ, Powell MF (1981) The mechanism of proton transfer from intramolecularily hydrogen-bonded acids. Differences between nitrogen-to-oxygen and nitrogen-to-nitrogen proton transfer. J Am Chem Soc 103(4):972–973. https://doi.org/10.1021/ja00394a058

    Article  CAS  Google Scholar 

  11. Ramezanipour F, Aghabozorg H, Shokrollahi A, Shamsipur M, Stoeckli-Evans H, Soleimannejad J, Sheshmani S (2005) Different complexation behavior of a proton transfer compound obtained from 1,10-phenanthroline and pyridine-2,6-dicarboxylic acid with InIII and CeIII: synthesis, crystal structures and solution studies. J Mol Struc 779:77–86. https://doi.org/10.1016/j.molstruc.2005.07.021

    Article  CAS  Google Scholar 

  12. Swift J, Pivovar AM, Reynolds AM, Ward MD (1998) Template-directed architectural ısomerism of open molecular frameworks: engineering of crystalline clathrates. J Am Chem Soc 120(24):5887–5894. https://doi.org/10.1021/ja980793d

    Article  CAS  Google Scholar 

  13. Bruker SADABS, Bruker AXS (2005) Inc Madison

  14. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  15. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  16. Farrugia LJ (1997) ORTEP-3 for Windows-a version of ORTEP-III with a graphical user interface (GUI). J Appl Cryst 30:565–565. https://doi.org/10.1107/S0021889897003117

    Article  CAS  Google Scholar 

  17. Kaplancıklı ZA, Turan-Zitouni G, Revial G, Güven K (2004) Synthesis and study of antibacterial and antifungal activities of novel 2-[[(benzoxazole/benzimidazole-2-yl)sulfanyl] acetylamino]thiazoles. Arch Pharm Res 27(11):1081–1085. https://doi.org/10.1007/BF02975108

    Article  PubMed  Google Scholar 

  18. Büyükkıdan N, İlkimen H, Durmuş B, Gülbandılar A (2021) Synthesis and characterization of Cu(II) complexes of proton transfer salts derived from piperazine derivatives and 5-sulfosalicylic acid. Maced J Chem Chem Eng 40(2):159–169. https://doi.org/10.20450/mjcce.2021.2411

    Article  CAS  Google Scholar 

  19. İlkimen H, Türken N, Gulbandilar A (2021) Synthesis, characterization, antimicrobial and antifungal activity studies of two novel aminopyridine-sulfamoylbenzoic acid salts and their Cu(II) complexes. J Iran Chem Soc 18:1941–1946. https://doi.org/10.1007/s13738-021-02157-4

    Article  CAS  Google Scholar 

  20. Filarowski A, Koll A, Głowiak T (1997) The influence of steric and polar effects on hydrogen bonding in 2-(N,N-diethylamino)-methyl-4-NO2-phenols. J Chem Crystallogr 27(12):707–719. https://doi.org/10.1007/BF02576550

    Article  CAS  Google Scholar 

  21. Tang H, Kitani A, Yamashita T, Ito S (1998) Highly sulfonated polyaniline electrochemically synthesized by polymerizing aniline-2,5-disulfonic acid and copolymerizing it with aniline. Synt Met 96(1):43–48. https://doi.org/10.1016/S0379-6779(98)00061-7

    Article  CAS  Google Scholar 

  22. Etter MC, MacDonald JC, Bernstein J (1990) Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Cryst B 46:256–262. https://doi.org/10.1107/S0108768189012929

    Article  Google Scholar 

  23. Hayashi N, Sato K, Sato Y, Iwagami M, Nishimura N, Yoshino J, Higuchi H, Sato T (2011) Elongation of phenoxide C–O bonds due to formation of multifold hydrogen bonds: statistical, experimental, and theoretical studie. J Org Chem 76(14):5747–5758. https://doi.org/10.1021/jo200852r

    Article  CAS  PubMed  Google Scholar 

  24. Engh RA, Huber R (1991) Accurate bond and angle parameters for X-ray protein structure refinement. Acta Cryst A 47:392–400. https://doi.org/10.1107/S0108767391001071

    Article  Google Scholar 

  25. Sagar BK, Girisha M, Yathirajan HS, Rathore RS, Glidewell C (2017) Crystal structures of 2-amino-4,4,7,7-tetramethyl4,5,6,7-tetrahydro-1,3-benzothiazol-3-ium benzoate and 2-amino-4,4,7,7-tetramethyl-4,5,6,7- tetrahydro-1,3-benzothiazol-3-ium picrate. Acta Cryst E73:1320–1325. https://doi.org/10.1107/S2056989017011446

    Article  Google Scholar 

  26. Shaibah MAE, Sagar BK, Yathirajan HS, Cordes DB, Slawin AMZ, Harrison WTA (2019) Hydrogen-bonded molecular salts of reduced benzothiazole derivatives with carboxylates: a robust R22(8) supramolecular motif (even when disordered). Acta Cryst E75:167–174. https://doi.org/10.1107/S2056989018018224

    Article  Google Scholar 

  27. Dale SH, Elsegood MRJ, Coombs AEL (2004) Hydrogen bond directed supramolecular arrays utilising hemimellitic acid: solvent inclusion clathrates. Cryst Eng Comm 6(59):328–335

    Article  CAS  Google Scholar 

  28. Altaf M, Stoeckli-Evans H (2009) 1,3-Benzothiazol-2-amine. Acta Cryst E 65:o1894–o1894. https://doi.org/10.1107/S1600536809027561

    Article  CAS  Google Scholar 

  29. Hehre WJ, Ditchfilld R, Stewart RF, Popl JA (1970) Self-consistent molecular orbital methods. IV.  Use of gaussian expansions of slater‐type orbitals. Extension to second‐row molecules. J Chem Phys 52(5):2769–2769

    Article  CAS  Google Scholar 

  30. Muesmann T, Wickleder M, Zitzer C, Christoffers J (2013) Octahydropentalene 2,5-disulfonic acid—a new linker molecule for coordination polymers. Synlett 24(8):959–962. https://doi.org/10.1055/s-0032-1317806

    Article  CAS  Google Scholar 

  31. Saleh AA, Khalil SME, Eid MF, El Ghamry MA (2003) Synthesis, spectral and magnetic studies of mononuclear and binuclear Mn(II), Co(II), Ni(II) and Cu(II) complexes with semicarbazone ligands derived from sulfonamide. J Coord Chem 56:467–480. https://doi.org/10.1080/0095897031000099992

    Article  CAS  Google Scholar 

  32. Moghimi A, Moosavi SM, Kordestani D, Maddah B, Shamsipur M, Aghabozorg H, Ramezanipour F, Kickelbick G (2007) Pyridine-2,6-bis(monothiocarboxylic) acid and 2-aminopyridine as building blocks of a novel proton transfer compound: solution and X-ray crystal structural studies. J Mol Struct 828:38–45. https://doi.org/10.1016/j.molstruc.2006.05.034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge to Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8-QUEST diffractometer.

Funding

We thank to Kütahya Dumlupınar University Research Foundation (Project No: 2021-42) for providing support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurgün Büyükkıdan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büyükkıdan, N., İlki̇men, H., Kaya, S. et al. Two New Proton Transfer Salts of Benzo[d]thiazol-2-amine with Different Aromatic Acids. J Chem Crystallogr 53, 336–344 (2023). https://doi.org/10.1007/s10870-022-00974-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00974-w

Keywords

Navigation