Log in

Effect of substituting manganese by few cobalt content in the transport properties of Pr/Ca based manganite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A solid-state reaction technique was employed to elaborate Pr0.7Ca0.3Mn 0.98Co 0.02O3 (Co-PCMO) ceramic. Electrical investigations have been conducted to comprehend the dynamic of charge carriers in the elaborated material. The DC-resistance study confirms the semiconductor behavior of the Co-PCMO system. This is attributed to the hop** mechanism in different temperature ranges. AC-conductance responses are explained according to the contribution of numerous conduction processes. It is found that the transport properties are dominated by the correlated-barrier-hop** (CBH) and the non-overlap** small polaron tunneling (NSPT) models. Then, the frequency dependence of the AC- conductance is described using the double Jonscher power law, the single Jonscher power law, and the Drude model in the low, intermediate, and high-temperature regions respectively. The application of the scaling approach confirms the validity of the time–temperature superposition principle (TTSP) in the temperature range [140K-160K]. The deviation from the Summerfield scaling model at high frequencies can be due to the change in the conduction process. Impedance responses display the important role of grain boundaries in electrical conduction. Then, it affirms the thermally activation of the relaxation phenomenon. In addition, the blocking factor's temperature dependence confirms the blocking effect's presence. This can be due to the formation of blocked zones, where some charge carriers are trapped and do not participate in the electrical conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data included in this manuscript are available and can be discussed (or shared), on request from the corresponding author.

References

  1. Y. Moualhi, M. Smari, H. Nasri, H. Rahmouni, Combined experimental characterization and conduction models based on impedance spectroscopy for studying the microstructural and transport properties of electro-ceramic perovskites. Mat. Today Commun 38, 108529 (2024)

    Article  CAS  Google Scholar 

  2. A. Kuma, D. Bérardan, D. Dragoe, E. Riviere, T. Takayama, H. Takagi, N. Dragoe, Magnetic and electrical properties of high-entropy rare-earth manganites. Mater. Today Phys 32, 101026 (2023)

    Article  Google Scholar 

  3. A. Ghodhbani, Y. Moualhi, W. Dimassi, R. M’nassri, H. Rahmouni, K. Khirouni, Contribution of strong electron-phonon interaction in the transport properties of La0.8Ca0.2Mn0.5Ni0.5O3 system. Phys. B: Cond. Matt 683, 415964 (2024)

    Article  CAS  Google Scholar 

  4. C.A. Taboada-Moreno, A.M. Bolarín-Miró, F. Pedro-García, C.A. Cortés Escobedo, F. Sánchez-De Jesús, The effect of synthesis method on oxygen nonstoichiometry and electrical conductivity of Sr-doped. J. Magn. Magn. Mat 570, 170542 (2023)

    Article  CAS  Google Scholar 

  5. A. Žužić, A. Ressler, A. Šantić, J. Macan, A. Gajović, The effect of synthesis method on oxygen nonstoichiometry and electrical conductivity of Sr-doped lanthanum manganites. J. Alloys Compd. 907, 164456 (2022)

    Article  Google Scholar 

  6. H.E. Sekrafi, A.B.J. Kharrat, M.A. Wederni, N. Chniba-Boudjada, K. Khirouni, W. Boujelben, Impact of low titanium concentration on the structural electrical and dielectric properties of Pr0.75Bi0.05Sr0.1Ba0.1Mn1−xTix O3 (x = 0, 0.04) compounds. J. Mater. Sci. Mater. Electron. 30, 89 (2019)

    Article  Google Scholar 

  7. M.D. Daivajna, A. Rao, G.S. Okram, Electrical, thermal and magnetic properties of Bi-doped La0.7 − xBi xSr0.3MnO3 manganites. J. Alloy. Compd. 61(7), 351 (2014)

    Google Scholar 

  8. P.R. Koushalya, K.N. Anuradha, Effect of ‘a’ and ‘b’ site substitution on magnetic properties of bulk and nanoparticles of Pr0.57Ca0.43MnO3 manganite. AIP Conf. Proc. 2274, 020001 (2020)

    Article  Google Scholar 

  9. P.D.H. Yen, N.T. Dung, T.D. Thanh, S.-C. Yu, Magnetic properties and magnetocaloric effect of Sr-doped Pr0.7Ca0.3MnO3 compounds. Curr. Appl. Phys. 18, 1280 (2018)

    Article  Google Scholar 

  10. A. Selmi, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Effect of Ni do** on the structural, magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1−yNiyO3 manganites. J. Supercond. Nov. Magnetism 26, 1421 (2012)

    Article  Google Scholar 

  11. R. Jemai, R. M’nassri, A. Selmi, H. Rahmouni, K. Khirouni, N. Chniba Boudjada, A. Cheikhrouhou, Composition dependence of physical properties in Pr0.7Ca0.3Mn1−xNixO3. J. Alloy. Comp 693, 631 (2017)

    Article  CAS  Google Scholar 

  12. A. Swaina, P.S.A. Kumarb, V. Gorigea, Electrical conduction mechanism for the investigation of charge ordering in Pr0.5Ca0.5MnO3 manganite system. J. Magn. Magn. Mater. 485, 358 (2019)

    Article  Google Scholar 

  13. M. Debnath, B. Biswas, E. Bose, S. Pal, First order metamagnetic transition in Vanadium doped charge ordered Pr05.Ca0.5MnO3. Phys. B Condens. Matter 582, 412013 (2020)

    Article  CAS  Google Scholar 

  14. J. Barratt, M.R. Lees, G. Balakrishnan, D. McKPaula, Insulator–metal transitions in Pr0.7Ca0.3MnO3 induced by a magnetic field. Appl. Phys. Lett. 68, 424 (1996)

    Article  CAS  Google Scholar 

  15. M. Shah, M. Nadeem, M. Idrees, M. Atif, M.J. Akhtar, Change of conduction mechanism in the impedance of grain boundaries in Pr0.4Ca0.6MnO3. J. Magn. Magn. Mater. 332, 61 (2013)

    Article  CAS  Google Scholar 

  16. Y. Liu, T. Sun, F. Ji, G. Dong, S. Zhang, X. Yu, Z. Li, Q. Chen, X. Liu, Influence of Ag do** on electrical and magnetic properties of La0.67Ca0.33MnO3 polycrystalline ceramics. Ceram. Int. 45, 11006 (2019)

    Article  CAS  Google Scholar 

  17. R. M’nassri, N. Chniba-Boudjada, A. Cheikhrouhou, 3D-Ising ferromagnetic characteristics and magnetocaloric study in Pr0.4Eu0.2Sr0.4MnO3 manganite. J. Alloys Compd. 640, 183 (2015)

    Article  Google Scholar 

  18. Y. Bitla, P.D. Babu, S.N. Kaul, Magneto-transport in under and optimally hole-doped bulk nanocrystalline La1−xCaxMnO3 manganites. J. Magn. Magn. Mater. 501, 166291 (2020)

    Article  CAS  Google Scholar 

  19. C.S. Hong, W.S. Kim, N.H. Hur, Transport and magnetic properties in the ferromagnetic regime of La1− xCaxMnO3. Phys. Rev. B 63, 092504 (2001)

    Article  Google Scholar 

  20. Q. Yang, J. Yao, K. Zhang, W. Wang, X. Zuo, H. Tang, M. Wu, G. Li, Perovskite-type La1− xCaxMnO3 manganese oxides as effective counter electrodes for dye-sensitized solar cells. J. Electroanal. Chem. 833, 1 (2019)

    Article  CAS  Google Scholar 

  21. G.Q. Gong, C. Canedy, G. **ao, J.Z. Sun, A. Gupta, W.J. Gallagher, Colossal magnetoresistance of 1000000-foldmagnitude achieved in the anti-ferromagnetic phase of La1− xCaxMnO3. Appl. Phys. Lett. 67, 1783 (1995)

    Article  CAS  Google Scholar 

  22. M. Shah, M. Nadeem, M. Atif, Origin of anomalies and phase competitions around magnetic transition temperature in Pr0.7Ca0.3MnO3. J. Phys. D Appl. Phys. 46, 095001 (2013)

    Article  CAS  Google Scholar 

  23. T. Elovaara, H. Huhtinen, S. Majumdar, P. Paturi, Irreversible metamagnetic transition and magnetic memory in small-bandwidth manganite Pr1−xCaxMnO3 (x = 0.0–0.5). J. Phys. Condens. Matter 24, 216002 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. R. Zhang, J. Miao, F. Shao, W.T. Huang, C. Dong, X.G. Xu, Y. Jiang, Transparent amorphous memory cell: a bipolar resistive switching in ZnO/Pr0.7Ca0.3MnO3/ ITO for invisible electronics application. J. Non-Cryst. Solids 406, 102 (2014)

    Article  CAS  Google Scholar 

  25. I. Kim, M. Siddik, J. Shin, K.P. Biju, S. Jung, H. Hwang, Low temperature solutionprocessed graphene oxide/Pr0.7Ca0.3MnO3 based resistive-memory device. Appl. Phys. Lett. 99, 042101 (2011)

    Article  Google Scholar 

  26. Q. Wang, D.S. Shang, Z.H. Wu, L.D. Chen, X.M. Li, “Positive” and “negative” electric-pulse-induced reversible resistance switching effect in Pr0.7Ca0.3MnO3 films. Appl. Phys. A 86, 357 (2006)

    Article  Google Scholar 

  27. J. Tikkanen, H. Huhtinen, P. Paturi, Oxygen-sintered (Pr, Ca) MnO3, Structure and magnetism at high Ca concentrations. J. Alloy. Comp 635, 41 (2015)

    Article  CAS  Google Scholar 

  28. H. Souidi, Y. Regaieg, M. Koubaa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, M. Bouaziz, Synthesis structure and magnetic properties of Pr0.65Ca0.3M0.05MnO3 (M = Na, K and Ag): a perovskite manganites with metamagnetic phase transitions. Phys. C: Supercond. Appl 551, 25 (2018)

    Article  CAS  Google Scholar 

  29. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3 Mn0.95 X0.05 O3 (Cr, Ni, Co and Fe) manganites. J. Alloy. Comp 619, 627 (2015)

    Article  CAS  Google Scholar 

  30. A. Selmi, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Structure, magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1−yCryO3. IOP Conf. Ser. Mater. Sci. Eng 28, 012052 (2012)

    Article  Google Scholar 

  31. R. M’nassri, N. Chniba Boudjada, A. Cheikhrouhou, Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites. J. Alloy. Comp 626, 20 (2015)

    Article  Google Scholar 

  32. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Influence of transition metal do** (Fe Co, Ni and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO3 manganites. Ceram. Int. 41, 10177 (2015)

    Article  CAS  Google Scholar 

  33. R. M’nassri, M. Khelifi, H. Rahmouni, A. Selmi, K. Khirouni, N. Chniba-Boudjada, A. Cheikhrouhou, Study of physical properties of cobalt substituted Pr0.7Ca0.3MnO3 ceramics. Ceram. Int. 42, 6145 (2016)

    Article  Google Scholar 

  34. M. Khelifi, R. M’nassri, A. Selmi, H. Rahmouni, K. Khirouni, N. Chniba Boudjada, A. Cheikhrouhou, Investigation of magnetic and transport properties of PrCa(MnCo)O prepared by solid state process. J. Magn. Magn. Mater. 423, 20 (2017)

    Article  CAS  Google Scholar 

  35. Y. Moualhi, R. M’nassri, H. Rahmouni, M. Gassoumi, K. Khirouni, Possibility of controlling the conduction mechanism by choosing specific do** element in praseodymium manganite system. RSC Adv. 10, 338685 (2020)

    Article  Google Scholar 

  36. N.N. AbMannan, S.A. Razali, S. Shamsuddin, M.Z. Noh, Crystalline phase, surface morphology and electrical properties of monovalent-doped Nd0.75Na0.25Mn1-yCoyO3 manganites. J. Sci. Technol. 9, 65 (2017)

    Google Scholar 

  37. M.A. Gdaiem, S. Ghodhbane, A.H. Dhahri, J. Dhahri, E.K. Hlil, Effect of cobalt on structural, magnetic and magnetocaloric properties of La0.8Ba0.1Ca0.1Mn1-xCoxO3 (x=0.00, 0.05 and 0.10) manganites. J. Alloys Compd. 681, 547 (2016)

    Article  CAS  Google Scholar 

  38. D. Varshney, I. Mansuri, M.W. Shaikh, Y.K. Kuo, Effect of Fe and Co do** on electrical and thermal properties of La0.5Ce0.5Mn1-x(Fe, Co)xO3 manganites. Mater. Res. Bull. 48, 4606 (2013)

    Article  CAS  Google Scholar 

  39. N. Gayathri, A.K. Raychaudhuri, S.K. Tiwary, R. Gundakaram, A. Arulraj, C.N.R. Rao, Electrical transport, magnetism, and magnetoresistance in ferromagnetic oxides with mixed exchange interactions: a study of the La0.7Ca0.3Mn1−xCoxO3 system. Phys. Rev. B 56, 1345 (1997)

    Article  CAS  Google Scholar 

  40. Y. Moualhi, R. M’nassri, M.M. Nofal, H. Rahmouni, A. Selmi, M. Gassoumi, N. Chniba-Boudjada, K. Khirouni, A. Cheikrouhou, Influence of Fe do** on physical properties of charge ordered praseodymium-calcium-manganite material. Eur. Phys. J. Plus 135, 809 (2020)

    Article  CAS  Google Scholar 

  41. X. Huang, W. Chen, W. Wu, Y. Zhou, J. Wu, Q. Wang, Y. Chen, Effect of Co3+ substitution on the structure and magnetic properties of La0.6Ca0.4MnO3. J. Mater. Sci. Mater. Electron. 27, 25395 (2016)

    Article  Google Scholar 

  42. N.F. Mott, The origin of some ideas on non-crystalline materials. J. Non-Cryst. Solids 28, 147 (1978)

    Article  CAS  Google Scholar 

  43. N.F. Mott, Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1, 1 (1968)

    Article  CAS  Google Scholar 

  44. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41 (1969)

    Article  CAS  Google Scholar 

  45. N.F. Mott, Conduction in non-crystalline materials. Phil. Mag. 19, 835 (1969)

    Article  CAS  Google Scholar 

  46. N.F. Mott, Polarons. Mater. Res. Bull. 13, 1389 (1978)

    Article  CAS  Google Scholar 

  47. A. Ghosh, M. Sural, Conductivity spectra of sodium fluorozirconate glasses. J. Chem. Phys. 114, 3243 (2001)

    Article  CAS  Google Scholar 

  48. A. Ghosh, A. Pan, Scaling of the conductivity spectra in ionic glasses: dependence on the structure. Phys. Rev. Lett. 84, 2188 (2000)

    Article  CAS  PubMed  Google Scholar 

  49. S.R. Elliott, A. C. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135 (1987)

    Article  CAS  Google Scholar 

  50. S.R. Elliott, F.E.G. Henn, Application of the Anderson-Stuart model to the AC conduction of ionically conducting materials. J. Non-Cryst. Solids 116, 179 (1990)

    Article  CAS  Google Scholar 

  51. Y. Moualhi, H. Rahmouni, K. Khirouni, Usefulness of theoretical approaches and experiential conductivity measurements for understanding manganite transport mechanisms. Results Phys 19, 103570 (2020)

    Article  Google Scholar 

  52. Y. Moualhi, M.M. Nofal, R. M’nassri, H. Rahmouni, A. Selmi, M. Gassoumi, K. Khirouni, A. Cheikrouhou, Double Jonscher response and contribution of multiple mechanisms in electrical conductivity processes of Fe-PrCaMnO ceramic. Ceram. Int. 46, 1601 (2020)

    Article  CAS  Google Scholar 

  53. K. Dhaoudi, S. El-Helali, Z. Othmen, B.M. Suleiman, T. Tsuchiya, Microstructure and electrical transport mechanisms of the Ca-doped LaMnO3 films grown on MgO substrate. J Materiomics 6, 17 (2020)

    Article  Google Scholar 

  54. Y. Moualhi, M. Smari, H. Rahmouni, K. Khirouni, Fundamental Behaviors, and Contributions of Hop** and Tunneling Mechanisms to the Transport Characteristics of the La0.5Ca0.5MnO3 Phase Separated Perovskite. ACS Appl. Electron. Mater. 4, 4893 (2022)

    Article  CAS  Google Scholar 

  55. Y. Liu, T. Sun, F. Ji, G. Dong, S. Zhang, X. Yu et al., Influence of Ag do** on electrical and magnetic properties of La0.67Ca0.33MnO3 polycrystalline ceramics. Ceram. Int. 45, 11006 (2019)

    Article  CAS  Google Scholar 

  56. B. Panda, K.L. Routray, D. Behera, Studies on conduction mechanism and dielectric properties of the nano-sized La0.7Ca0.3MnO3 (LCMO) grains in the paramagnetic state. Phys. B 583, 411967 (2020)

    Article  CAS  Google Scholar 

  57. M. Shah, M. Idrees, M. Nadeem, U. Ghazanfar, M. Atif, F. Alam, A. Asadullah, M. Sultan Irshad, M.M. Abbasi, F. Bukhari, M. Rizwan, Investigation of transport mechanism through charge-active regions in Sm0.5Ca0.5MnO3. J. Magn. Magn. Mater. 564, 170160 (2022)

    Article  CAS  Google Scholar 

  58. K.M. Sangwan, N. Ahlawat, S. Rani, R.S. Kundu, Influence of Mn do** on electrical conductivity of lead free BaZrTiO3 perovskite ceramic. Ceram. Int. 44, 10315 (2018)

    Article  CAS  Google Scholar 

  59. P. Bruce, High and low frequency Jonscher behavior of an ionically conducting glass. Solid State Ion. 15, 247 (1985)

    Article  CAS  Google Scholar 

  60. A.K. Jonscher, M.S. Frost, Weakly frequency-dependent electrical conductivity in a chalcogenide glass. Thin Solid Films 37, 267 (1976)

    Article  CAS  Google Scholar 

  61. R. Hanen, A. Mleiki, H. Rahmouni, N. Guermazi, K. Khirouni, E.K. Hlil, A. Cheikhrouhou, Effect of the nature of the dopant element on the physical properties of X-PrCaMnO system (X = Cd, Sr, and Pb). J. Magn. Magn. Mater. 508, 166810 (2020)

    Article  CAS  Google Scholar 

  62. K. Lee, S. Cho, S.H. Park, Z.J. Heeger, C.-W. Lee, S.-H. Lee, Metallic transport inpolyaniline. Nature 441, 65 (2006)

    Article  CAS  PubMed  Google Scholar 

  63. Y. Moualhi, H. Rahmouni, K. Khirouni, Dynamics of charge carriers in doped manganite based on conductivity measurements and theoretical models. Physica B 606, 413129 (2021)

    Article  Google Scholar 

  64. A.K. Jonscher, The “universal” dielectric response. Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  65. H. Rahmouni, B. Cherif, K. Khirouni, M. Baazaoui, S. Zemni, Influence of polarization and iron content on the transport properties of praseodymium–barium manganite. J. Phys. Chem. Sol 88, 35 (2016)

    Article  CAS  Google Scholar 

  66. A. Ghosh, Frequency-dependent conductivity in bismuth-vanadate glassy semi-conductors. Phys. Rev. B 41, 1479 (1990)

    Article  CAS  Google Scholar 

  67. A. Ghosh, Transport properties of vanadium germanate glassy semiconductors. Phys. Rev. B 42, 5665 (1990)

    Article  CAS  Google Scholar 

  68. A.K. Tammam, D. Gawad, M.F. Mostafa, Crossover from overlap large polaron to small polaron tunneling: a study of conduction mechanisms and phase transitions in a new long chain organic inorganic hybrid. J. Phys. Chem. Sol 149, 109787 (2021)

    Article  CAS  Google Scholar 

  69. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44, 10457 (2015)

    Article  CAS  PubMed  Google Scholar 

  70. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Dielectric behavior and AC conductivity of Tb3+ doped Ni0.4Zn0.6Fe2O4 nanoparticles. J. Alloy. Compd. 541, 35 (2012)

    Article  Google Scholar 

  71. H. Salhi, Y. Moualhi, A. Mleiki, H. Rahmouni, K. Khirouni, Electrical and dielectric properties of the La0.4Bi0.3Sr0.2Ba0.1MnO3 ceramic synthesized by sol–gel method. Eur. Phys. J. Plus 138, 682 (2023)

    Article  CAS  Google Scholar 

  72. K. Kumari, A. Prasad, K. Prasad, Dielectric, impedance/modulus and conductivity studies on [Bi0.5(Na1−xKx )0.5]0.94Ba0.06TiO3, (0.16≤ x≤ 0.20) lead-free ceramics. Am. J. Mater. Sci 6, 18 (2016)

    Google Scholar 

  73. H. Rahmouni, B. Cherif, R. Jemai, A. Dhahri, K. Khirouni, Europium substitution for lanthanium in LaBaMnO–The structural and electrical properties of La0.7−xEuxBa0.3MnO3 perovskite. J. Alloy. Compd. 690, 895 (2017)

    Article  Google Scholar 

  74. R. Jemaï, R. Lahouli, S. Hcini, H. Rahmouni, K. Khirouni, Investigation of nickel effects on some physical properties of magnesium-based ferrite. J. Alloy. Compd. 705, 348 (2017)

    Article  Google Scholar 

  75. K. De, S. Majumdar, S. Giri, Low-temperature transport anomaly in the self doped manganite, La0.9Mn0.98M0.02O3 (M = 0, Fe, and Co). J. Magn. Magn. Mater. 322, 337 (2010)

    Article  CAS  Google Scholar 

  76. A. Selmi, A. Bettaibi, H. Rahmouni, R. M’nassri, N. Chniba Boudjada, A. Cheikhrouhou, K. Khirouni, Physical properties of 20% Cr-doped Pr0.7Ca0.3MnO3 perovskite. Ceram. Int. 41, 11221 (2015)

    Article  CAS  Google Scholar 

  77. S. Mnefgui, A. Dhahri, J. Dhahri, E.-K. Hlil, Effects of transition-Metal V-Do** on the Structural, Magnetic and Transport properties in La0.67Sr0.33MnO3 Manganite oxide. J. Supercond. Nov. Magn. 26, 251 (2013)

    Article  CAS  Google Scholar 

  78. Y. Sun, X. Xu, Y. Zhang, Variable-range hop** of small polarons in mixed-valence manganites. J. Phys. Condens. Matter 12, 10475 (2000)

    Article  CAS  Google Scholar 

  79. P. Nagels, Electronic transport in amorphous semiconductors, Amorphous Semiconductors (Springer, Berlin, Heidelberg, 1979), p.113

    Google Scholar 

  80. W.-H. Jung, Variable range hop** conduction in Gd1/3Sr2/3FeO3. Phys. B: Condens. Matter 304, 75 (2001)

    Article  CAS  Google Scholar 

  81. Y. Moualhi, M.A. Alamri, A. Jbeli, N.A. Althumairi, S. El Kossi, R. Ben Brahem, H. Rahmouni, Elaboration of La (Sr/Na) Mn (Ti)O3 ceramic, structural, and morphological investigations, and contribution of direct and indirect interactions on transport properties. Ceram. Int. 50, 1–11 (2024)

    Article  Google Scholar 

  82. Y. Moualhi, H. Rahmouni, M. Gassoumi, K. Khirouni, Summerfield scaling model and conduction processes defining the transport properties of silver substituted half doped (La-Ca) MnO3 ceramic. Ceram. Int. 46, 24710 (2020)

    Article  CAS  Google Scholar 

  83. Y. Moualhi, R. M’nassri, M.M. Nofal, H. Rahmouni, A. Selmi, M. Gassoumi, N. ChnibaBoudjada, K. Khirouni, A. Cheikrouhou, Magnetic properties and impedance spectroscopic analysis in Pr0.7Ca0.3Mn0.95Fe0.05O3 perovskite ceramic. J. Mater. Sci. Mater. Electron. 31, 21046 (2020)

    Article  CAS  Google Scholar 

  84. Y. Ah Dhahri, C. Moualhi, A. Henchiri, P. Benali, M.P.F. Sanguino, M.A. Graça, N. Valente, H.R. Abdelmoula, B.F.O. Costa, Study of structural properties and conduction mechanisms of La0.67Ca0.2Ba0.13Fe0.97Ti0.03O3 perovskite. Inorg. Chem. Commun. 140, 109435 (2022)

    Article  Google Scholar 

  85. Y. Moualhi, M. Smari, H. Rahmouni, Understanding the charge carriers dynamics in the La0.55Ca0.45Mn0.8Nb0.2O3 perovskite: scaling of electrical conductivity spectra. RSC Adv. 13, 30010 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. J.C. Dyre, T.B. Schroder, Universality of ac conduction in disordered solids. Rev. Mod. Phys. 72, 873 (2000)

    Article  Google Scholar 

  87. S. Summerfield, Universal low-frequency behaviour in the ac hop** conductivity of disordered systems. Philos. Mag. B 52, 9 (1985)

    Article  Google Scholar 

  88. D.L. Sidebottom, Dimensionality dependence of the conductivity dispersion in ionic materials. Phys. Rev. Lett. 83, 983 (1999)

    Article  CAS  Google Scholar 

  89. Y. Moualhi, M. Smari, H. Rahmouni, K. Khirouni, E. Dhahri, Superlinear dependence of the conductivity, double/single Jonscher variations and the contribution of various conduction mechanisms in transport properties of La0.5Ca0.2Ag0.3MnO3 manganite. J. Alloys Comp. 898, 162866 (2022)

    Article  CAS  Google Scholar 

  90. W. Chen, W. Zhu, O.K. Tan, X.F. Chen, Frequency and temperature dependent impedance spectroscopy of cobalt ferrite composite thick films. J. Appl. Phys. 108, 034101 (2010)

    Article  Google Scholar 

  91. Y. Moualhi, A. Mleiki, H. Rahmouni, K. Khirouni, Investigation of the dielectric response and the transport properties of samarium and strontium-based manganite. Eur. Phys. J 137, 406 (2022)

    CAS  Google Scholar 

  92. T. Jadli, Y. Moualhi, A. Mleiki, H. Rahmouni, K. Khirouni, A. Cheikhrouhou, Electrical and dielectric properties of Sm0.55Sr0.45MnO3 compound. J. Solid State Chem. 302, 122378 (2021)

    Article  CAS  Google Scholar 

  93. L. Dessemond, R. Muccillo, M. Hénault, M. Kleitz, Electric conduction-blocking effects of voids and second phases in stabilized zirconia. Appl. Phys. A 57, 57 (1993)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have accepted full responsibility for the content of this manuscript and have given their approval to its submission.

Corresponding author

Correspondence to Y. Moualhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanen, R., Moualhi, Y., Rahmouni, H. et al. Effect of substituting manganese by few cobalt content in the transport properties of Pr/Ca based manganite. J Mater Sci: Mater Electron 35, 1373 (2024). https://doi.org/10.1007/s10854-024-13114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13114-1

Navigation