Log in

Magnetic properties and impedance spectroscopic analysis in Pr0.7Ca0.3Mn0.95Fe0.05O3 perovskite ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The orthorhombic Pr0.7Ca0.3Mn0.95Fe0.05O3 manganite is subject to magnetic and impedance spectroscopy measurements. This sample shows a paramagnetic to ferromagnetic phase transition at about 90 K. According to the Banerjee criterion, the nature of the magnetic transition is found to be of second order.The conductance spectra for Pr0.7Ca0.3Mn0.95Fe0.05O3 ceramic obey the power law variation for characterizing the hop** dynamics of charge carriers. The activation energies extracted from the dc conductance and hop** frequency show a positive correlation. Using the scaling approach, the conductance spectra are merged into a single master curve, confirming the validity of the time–temperature superposition principle. Equally, a strong deviation from the Summerfield scaling is observed. The random barrier model (RBM) is applied to correct this anomaly and a single master curve is constructed with a positive value of the scaling parameter α. Such parameter indicates a coulomb exchange between the interacting particles. Impedance results confirm the contribution of the resistive grain boundary on the electrical properties and the appearance of multiple electrical relaxation phenomena in Pr0.7Ca0.3Mn0.95Fe0.05O3 sample. From the evolution of the derivative ANC with temperature, we confirm the presence of various conduction mechanisms. The Nyquist plots show that the increase in temperature is followed by a decrease in the grain resistance (Rg) and the grain boundary resistance (Rgb) values. Such monotonic decrease confirms a predominant role of grain boundary contribution in governing the transport properties of Pr0.7Ca0.3Mn0.95Fe0.05O3 compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Fan, Y. **e, Y.E. Yang, C. Kan, L. Ling, W. Tong, C. Wang, C. Ma, W. Sun, Y. Zhu, H. Yang, Ceram. Int. 45, 9179 (2019)

    CAS  Google Scholar 

  2. I. Ouni, H. Ben Khlifa, R. M’nassri, M.M. Nofal, H. Rahmouni, W. Cheikhrouhou, N. Chniba-Boudjada, K. Khirouni, A. Cheikhrouhou, RSC Adv. 9, 35599–35607 (2019)

    CAS  Google Scholar 

  3. B. Barrocas, S. Sério, A. Rovisco, Y. Nunes, M.E. Melo Jorge, Appl. Surf. Sci. 360, 798–806 (2016)

    CAS  Google Scholar 

  4. R. M’nassri, N. ChnibaBoudjada, A. Cheikhrouhou, J. Alloys Compd. 640, 183 (2015)

    Google Scholar 

  5. S. **, W. Lu, Y. Sun, J. Appl. Phys. 111, 063922 (2012)

    Google Scholar 

  6. S. Mahjoub, R. M’nassri, M. Baazaoui, E.K. Hlil, M. Oumezzine, J. Magn. Magn. Mater. 481, 29–38 (2019)

    CAS  Google Scholar 

  7. V.P.S. Awana, R. Tripathi, N. Kumar, H. Kishan, G.L. Bhalla, R. Zeng, L.S.S. Chandra, V. Ganesan, H.U. Habermeier, J. Appl. Phys. 107(9), 09D723 (2010)

    Google Scholar 

  8. R. Mʼnassri, Eur. Phys. J. Plus 131, 392 (2016)

    Google Scholar 

  9. W. Zhou, R. Ran, Z. Shao, J. Power Sources 192, 231–246 (2009)

    CAS  Google Scholar 

  10. N. Biškup, A. de Andrés, J.L. Martinez, C. Perca, Phys. Rev. B 72, 024115 (2005)

    Google Scholar 

  11. F.X. Hu, J. Gao, X.S. Wu, Phys. Rev. B 72, 064428 (2005)

    Google Scholar 

  12. S. Merten, O. Shapoval, B. Damaschke et al., Sci. Rep. 9, 2387 (2019)

    CAS  Google Scholar 

  13. A. Sakka, R. Mnassri, S. Tarhouni, W. Cheikhrouhou-Koubaa, N. Chniba-Boudjada, M. Oumezzine, A. Cheikhrouhou, Eur. Phys. J. Plus 134, 216 (2019)

    Google Scholar 

  14. K. Das, P. Sen, J. Magn. Magn. Mater. 485, 224–227 (2019)

    CAS  Google Scholar 

  15. R. Jemai, R. M’nassri, A. Selmi, H. Rahmouni, K. Khirouni, N. Chniba Boudjada, A. Cheikhrouhou, J. Alloys Compd. 693, 631 (2017)

    CAS  Google Scholar 

  16. A. Levstik, C. Filipič, V. Bobnar, A. Potočnik, D. Arčon, S. Drnovšek, J. Holc, Z. Jagličić, Phys. Rev. B 79, 153110 (2009)

    Google Scholar 

  17. M. Khelifi, R. M’nassri, A. Selmi, H. Rahmouni, K. Khirouni, N. Chniba Boudjada, A. Cheikhrouhou, J. Magn. Magn. Mater. 423, 20 (2017)

    CAS  Google Scholar 

  18. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Ceram. Int. 41, 10177 (2015)

    CAS  Google Scholar 

  19. R. M’nassri, M. Khelifi, H. Rahmouni, A. Selmi, K. Khirouni, N. Chniba-Boudjada, A. Cheikhrouhou, Ceram. Int. 42, 6145 (2016)

    Google Scholar 

  20. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N. ChnibaBoudjada, A. Cheikhrouhou, J. Alloys Compd. 619, 627 (2015)

    CAS  Google Scholar 

  21. L.K. Leung, A.H. Morrish, B.J. Evans, Phys. Rev. B 13, 4069 (1976)

    CAS  Google Scholar 

  22. K.H. Ahn, X.W. Wu, K. Liu, C.L. Chien, Phys. Rev. B 54, 15299 (1996)

    CAS  Google Scholar 

  23. F. Damay, A. Maignan, N. Nguyen, B. Raveau, J. Solid State Chem. 124, 385 (1996)

    CAS  Google Scholar 

  24. Y. Moualhi, M.M. Nofal, R. M’nassri, H. Rahmouni, A. Selmi, M. Gassoumi, K. Khirouni, A. Cheikrouhou, Ceram. Int. 46, 1601–1608 (2020)

    CAS  Google Scholar 

  25. H. Rahmouni, B. Cherif, M. Baazaoui, K. Khirouni, J. Alloys Compd. 575, 5 (2013)

    CAS  Google Scholar 

  26. J.M.D. Coey, M. Viret, Adv. Phys. 48, 167 (1999)

    CAS  Google Scholar 

  27. R. M’nassri, A. Selmi, N.C. Boudjada, A. Cheikhrouhou, J. Therm. Anal. Calorim. 129, 53–64 (2017)

    Google Scholar 

  28. S. Choura-Maatar, R. M’nassri, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, RSC Adv. 7, 50347–50357 (2017)

    CAS  Google Scholar 

  29. R. M’nassri, N. Chniba Boudjada, A. Cheikhrouhou, J. Alloys Compd. 626, 20 (2015)

    Google Scholar 

  30. F. Saadaoui, M.M. Nofal, R. M’nassri, M. Koubaa, N. Chniba-Boudjada, A. Cheikhrouhou, RSC Adv. 9, 25064–25074 (2019)

    CAS  Google Scholar 

  31. M. Rajeswari, R. Shreekala, A. Goyal, S.E. Lofland, S.M. Bhagat, K. Ghosh, R.P. Sharma, R.L. Greene, R. Ramesh, T. Venkatesan, Appl. Phys. Lett. 73, 2672 (1998)

    CAS  Google Scholar 

  32. I. PanneerMuthuselvam, R.N. Bhowmik, J. Alloys Compd. 511, 22–30 (2012)

    Google Scholar 

  33. L. Ling, J. Fan, L. Pi, S. Tan, Y. Zhan, Solid State Commun. 145, 11 (2008)

    CAS  Google Scholar 

  34. A. Arrot, J.E. Noakes, Phys. Rev. Lett. 19, 786 (1967)

    Google Scholar 

  35. K. Banerjee, Phys. Lett. 12, 16 (1964)

    Google Scholar 

  36. K. Jonscher, Nature 267, 673 (1977)

    CAS  Google Scholar 

  37. M.M. Ahmad, K. Yamada, T. Okuda, Solid State Ionics 167(2004), 285–292 (2004)

    CAS  Google Scholar 

  38. O.N. Verma, N.K. Singh, R. Pandey, P. Singh, RSC Adv. 5, 21614 (2015)

    CAS  Google Scholar 

  39. P.S. Raghvendra, O. Parkash, D. Kuma, Phys. Rev. B 84, 174306 (2011)

    Google Scholar 

  40. B. Roling, A. Happe, K. Funke, M.D. Ingram, Phys. Rev. Lett. 78, 2160 (1997)

    CAS  Google Scholar 

  41. J.C. Dyre, T.B. Schrøder, Rev. Mod. Phys. 72 873 (2000)

    Google Scholar 

  42. A. Ghosh, A. Pan, Phys. Rev. Lett. 84, 2188–2190 (2000)

    CAS  Google Scholar 

  43. S. Halder, A. Dutta, T.P. Sinha, RSC Adv. 7, 43812–43825 (2017)

    CAS  Google Scholar 

  44. S. Summerfield, Philos. Mag. B 52, 9 (1985)

    Google Scholar 

  45. S. Murugavel, B. Roling, Phys. Rev. Lett. 89, 195902 (2002)

    CAS  Google Scholar 

  46. S.D. Baranovskii, H. Cordes, J. Chem. Phys. 111, 7546 (1999)

    CAS  Google Scholar 

  47. B. Roling, Phys. Chem. Chem. Phys. 3, 5093 (2001)

    CAS  Google Scholar 

  48. C.R. Mariappan, G. Govindaraj, Phys. B 353, 65–74 (2004)

    CAS  Google Scholar 

  49. S. Murugavel, B. Roling, J. Phys. Chem. B 108, 2564–2567 (2004)

    CAS  Google Scholar 

  50. A. Ioanid, A.S. Dafinei, J. Optoelectron. Adv. Mater. 6, 465–470 (2004)

    CAS  Google Scholar 

  51. M. Shah, M. Nadeem, M. Idrees, M. Atif, M.J. Akhtar, J. Magn. Magn. Mater. 332, 61 (2013)

    CAS  Google Scholar 

  52. M. Atif, M. Nadeem, W. Khalid, Z. Ali, Mater. Res. Bull. 107, 171 (2018)

    CAS  Google Scholar 

  53. W. Hzez, A. Benali, H. Rahmouni, E. Dhahri, K. Khirouni, B.F.O. Costa, J. Phys. Chem. Solids 117, 12 (2017)

    Google Scholar 

  54. M. Javid, M. Nadeem, M.M. Hasan, Chem. Phys. Lett. 585, 74 (2013)

    Google Scholar 

  55. X. Zhao, W. Bai, Y. Ding, L. Wang, S. Wu, P. Zheng, P. Li, J. Zhai, J. Eur. Ceram. Soc. 40, 4475–4486 (2020)

    CAS  Google Scholar 

  56. W. Bai, X. Zhao, Y. Huang, Y. Ding, L. Wang, P. Zheng, P. Li, J. Zhai, Dalton Trans. 49, 8661–8671 (2020)

    CAS  Google Scholar 

  57. W. Bai, D. Chen, P. Zheng, J. **, Y. Zhou, B. Shen, J. Zhai, Z. Ji, J. Eur. Ceram. Soc. 37(7), 2591–2604 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Tunisian Ministry of Higher Education and Scientific Research and the Neel Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M’nassri.

Ethics declarations

Conflict of interest

The authors declare no financial conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moualhi, Y., M’nassri, R., Nofal, M.M. et al. Magnetic properties and impedance spectroscopic analysis in Pr0.7Ca0.3Mn0.95Fe0.05O3 perovskite ceramic. J Mater Sci: Mater Electron 31, 21046–21058 (2020). https://doi.org/10.1007/s10854-020-04617-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04617-8

Navigation