Log in

Molybdenum trioxide for supercapacitor application: defining the role of temperature and electrolyte

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The need to optimize basic synthesis parameters to get energy storage electrode with controlled structure and morphology cannot be overemphasized in getting improved specific capacitance among other supercapacitor properties. Here in, α-MoO3 electrodes were synthesized at low spray temperature of 200 ℃ and below as compared to high spray temperature in the literature. The prepared films were tested using XRD, SEM, EDS, UV–Vis, and electrochemically in three electrodes configurations in 1.0 M of KOH (unblended electrolyte) and 0.5 M LiOH/0.5 M KOH (blended electrolyte) electrolytes using galvanostatic charge/discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results showed α-MoO3 structure of the films with increase in the crystallite size (29.1–31.5 nm), nanosheet to pebble-like morphologies, and decrease in the bandgap (3.1–2.78 eV) from spray temperature of 150 ℃, to 200 ℃. The greatest specific capacitance displayed by the electrode was 1070 and 865 F/g in LiOH/KOH and KOH, respectively, with about 89.5% capacitive retention in LiOH/KOH. The results gotten show that the as-prepared α-MoO3 is a promising material for supercapacitor electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. N. Lakal, S. Dubal, P.E. Lokhande, Chapter 22—Supercapacitors: An introduction, in Nanotechnology in the Automotive Industry. ed. by H. Song, T.A. Nguyen, G. Yasin, N.B. Singh, R.K. Gupta (Elsevier, Amsterdam, 2022), pp.459–466

    Chapter  Google Scholar 

  2. C.O. Ugwuoke et al., Green synthesis of MnCr2O4 nanoparticles using Vernonia amygdalina (bitter leaf) for photocatalytic crystal violet dye degradation. J. Mater. Sci. Mater. Electron. 34(31), 2111 (2023). https://doi.org/10.1007/s10854-023-11499-z

    Article  CAS  Google Scholar 

  3. R.M. Obodo et al., Exploring dual synergistic effects of CeO2@ ZnO mediated sarcophrynium brachystachys leaf extract nanoparticles for supercapacitor electrodes applications. Hybrid Adv. (2024). https://doi.org/10.1016/j.hybadv.2024.100143

    Article  Google Scholar 

  4. H.E. Nsude et al., Surface modification and functionalization of ceramic composite using self-assembled monolayer and graft polymerization, in Surface modification and functionalization of ceramic composites. (Elsevier, 2023), pp.21–44

    Chapter  Google Scholar 

  5. R.M. Obodo et al., Performance evaluation of graphene oxide based Co3O4@GO, MnO2@GO and Co3O4/MnO2@GO electrodes for supercapacitors. Electroanalysis 32(12), 2786–2794 (2020). https://doi.org/10.1002/elan.202060262

    Article  CAS  Google Scholar 

  6. A.C. Nwanya, P.R. Deshmukh, R.U. Osuji, M. Maaza, C.D. Lokhande, F.I. Ezema, Synthesis, characterization and gas-sensing properties of SILAR deposited ZnO-CdO nano-composite thin film. Sens. Actuators B Chem. 206, 671–678 (2015). https://doi.org/10.1016/j.snb.2014.09.111

    Article  CAS  Google Scholar 

  7. P.E. Lokhande et al., The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coord. Chem. Rev. 473, 214771 (2022). https://doi.org/10.1016/j.ccr.2022.214771

    Article  CAS  Google Scholar 

  8. P.E. Lokhande et al., Surfactant free chemically deposited wheat spike-like nanostructure on Cu foam for supercapacitor applications. Mater. Today Proc. 18, 979–985 (2019). https://doi.org/10.1016/j.matpr.2019.06.537

    Article  CAS  Google Scholar 

  9. C. Jagtap et al., Synergistic growth of cobalt hydroxide on reduced graphene oxide/nickel foam for supercapacitor application. J. Energy Storage 83, 110666 (2024). https://doi.org/10.1016/j.est.2024.110666

    Article  Google Scholar 

  10. P.E. Lokhande, U.S. Chavan, Nanostructured Ni(OH)2/rGO composite chemically deposited on Ni foam for high performance of supercapacitor applications. Mater. Sci. Energy Technol. 2(1), 52–56 (2019). https://doi.org/10.1016/j.mset.2018.10.003

    Article  Google Scholar 

  11. P.E. Lokhande, U.S. Chavan, A. Pandey, Materials and fabrication methods for electrochemical supercapacitors: overview. Electrochem. Energy Rev. 3(1), 155–186 (2020). https://doi.org/10.1007/s41918-019-00057-z

    Article  CAS  Google Scholar 

  12. A.K. Samantara, S. Ratha, Historical background and present status of the supercapacitors, in Materials development for active/passive components of a supercapacitor. (Springer, Singapore, 2018), pp.9–10

    Chapter  Google Scholar 

  13. H.E. Nsude et al., Binder-free fabricated CuFeS2 electrodes for supercapacitor applications. Mater. Res. Express 9(2), 025501 (2022)

    Article  Google Scholar 

  14. R.M. Obodo et al., Graphene oxide enhanced Co3O4/NiO composite electrodes for supercapacitive devices applications. Appl. Surf. Sci. Adv. 9, 100254 (2022)

    Article  Google Scholar 

  15. P. Lokhande, U. Chavan, “Cyclic voltammetry behavior modeling of fabricated nanostructured Ni(OH) 2 electrode using artificial neural network for supercapacitor application.” Proc. Inst. Mech Eng. Part C J. Mech. Eng. Sci. 234, 2563–2568 (2020). https://doi.org/10.1177/0954406220907615

    Article  CAS  Google Scholar 

  16. D. Hanlon et al., Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors. Chem. Mater. 26(4), 1751–1763 (2014). https://doi.org/10.1021/cm500271u

    Article  CAS  Google Scholar 

  17. Y. Liu, X. Ji, H. Sun, X. Lin, Preparation of polypyrrole modified molybdenum trioxide nanorod and their applications in supercapacitors. Mater. Technol. 37(11), 1947–1953 (2022). https://doi.org/10.1080/10667857.2021.2014031

    Article  CAS  Google Scholar 

  18. R.K.K. Reddy et al., Hydrothermal approached 1-D molybdenum oxide nanostructures for high-performance supercapacitor application. SN Appl. Sci. 1(11), 1–9 (2019). https://doi.org/10.1007/s42452-019-1295-5

    Article  CAS  Google Scholar 

  19. R.J. Deokate, R. Kate, N.M. Shinde, R.S. Mane, Energy storage potential of sprayed α-MoO3 thin films. New J. Chem. 45(2), 582–589 (2021). https://doi.org/10.1039/D0NJ03910A

    Article  CAS  Google Scholar 

  20. N.G. Prakash, M. Dhananjaya, A.L. Narayana, O.M. Hussain, One-dimensional MoO3/Pd nanocomposite electrodes for high performance supercapacitors. Mater. Res. Express 6(8), 085543 (2019)

    Article  CAS  Google Scholar 

  21. L.S. Aravinda, U. Bhat, B.R. Bhat, Binder free MoO3/multiwalled carbon nanotube thin film electrode for high energy density supercapacitors. Electrochim. Acta 112, 663–669 (2013)

    Article  CAS  Google Scholar 

  22. B. Yao et al., Flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. 28(30), 6353–6358 (2016). https://doi.org/10.1002/adma.201600529

    Article  CAS  PubMed  Google Scholar 

  23. C. Julien, O.M. Hussain, L. El-Farh, M. Balkanski, Electrochemical studies of lithium insertion in MoO3 films. Solid State Ion. 53, 400–404 (1992)

    Article  Google Scholar 

  24. R. Sivakumar et al., MeV N+-ion irradiation effects on α-MoO3 thin films. J. Appl. Phys. 101(3), 034913 (2007). https://doi.org/10.1063/1.2437656

    Article  CAS  Google Scholar 

  25. W. Gulbinski, D. Pailharey, T. Suszko, Y. Mathey, Study of the influence of adsorbed water on AFM friction measurements on molybdenum trioxide thin films. Surf. Sci. 475(1–3), 149–158 (2001)

    Article  CAS  Google Scholar 

  26. S. Chandrasekaran et al., High performance bifunctional electrocatalytic activity of a reduced graphene oxide–molybdenum oxide hybrid catalyst. J. Mater. Chem. A 4(34), 13271–13279 (2016)

    Article  CAS  Google Scholar 

  27. H.-L. Koh, H.-K. Park, Characterization of MoO3–V2O5/Al2O3 catalysts for selective catalytic reduction of NO by NH3. J. Ind. Eng. Chem. 19(1), 73–79 (2013)

    Article  CAS  Google Scholar 

  28. L. Cattin, M. Morsli, F. Dahou, S.Y. Abe, A. Khelil, J.C. Bernède, Investigation of low resistance transparent MoO3/Ag/MoO3 multilayer and application as anode in organic solar cells. Thin Solid Films 518(16), 4560–4563 (2010)

    Article  CAS  Google Scholar 

  29. A.K. Prasad, P.I. Gouma, MoO3 and WO3 based thin film conductimetric sensors for automotive applications. J. Mater. Sci. 38(21), 4347–4352 (2003)

    Article  CAS  Google Scholar 

  30. R.J. Deokate, R. Kate, N.M. Shinde, R.S. Mane, Energy storage potential of sprayed α-MoO 3 thin films. New J. Chem. 45(2), 582–589 (2021)

    Article  CAS  Google Scholar 

  31. J. Dagar et al., Application of 2D-MoO3 nano-flakes in organic light emitting diodes: effect of semiconductor to metal transition with irradiation. RSC Adv. 5(11), 8397–8403 (2015)

    Article  CAS  Google Scholar 

  32. J.V.B. Moura, J.V. Silveira, J.G. da Silva Filho, A.G. Souza Filho, C. Luz-Lima, P.T.C. Freire, Temperature-induced phase transition in h-MoO3: stability loss mechanism uncovered by Raman spectroscopy and DFT calculations. Vib. Spectrosc. 98, 98–104 (2018)

    Article  CAS  Google Scholar 

  33. P. Sun et al., Effect of the phase structure on the catalytic activity of MoO3 and potential application for indoor clearance. J. Mater. Chem. C 8(7), 2475–2482 (2020)

    Article  CAS  Google Scholar 

  34. R. Irmawati, M. Shafizah, The production of high purity hexagonal MoO3 through the acid washing of as-prepared solids. Int J Basic Appl Sci 9(9), 241–244 (2009)

    Google Scholar 

  35. R. Coquet, D.J. Willock, The (010) surface of α-MoO 3, a DFT+ U study. Phys. Chem. Chem. Phys. 7(22), 3819–3828 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. K.H. Sharma et al., Two-dimensional molybdenum trioxide nanoflakes wrapped with interlayer-expanded molybdenum disulfide nanosheets: Superior performances in supercapacitive energy storage and visible-light-driven photocatalysis. Int. J. Hydrog. Energy 46(70), 34663–34678 (2021). https://doi.org/10.1016/j.ijhydene.2021.08.010

    Article  CAS  Google Scholar 

  37. B. Yao et al., flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. (2016). https://doi.org/10.1002/adma.201600529

    Article  PubMed  Google Scholar 

  38. J. Hu, A. Ramadan, F. Luo, B. Qi, X. Deng, J. Chen, One-step molybdate ion assisted electrochemical synthesis of α-MoO3-decorated graphene sheets and its potential applications. J. Mater. Chem. 21(38), 15009–15014 (2011)

    Article  CAS  Google Scholar 

  39. L. Zheng, Y. Xu, D. **, Y. **e, Well-aligned molybdenum oxide nanorods on metal substrates: solution-based synthesis and their electrochemical capacitor application. J. Mater. Chem. 20(34), 7135–7143 (2010)

    Article  CAS  Google Scholar 

  40. B. Mendoza-Sánchez, T. Brousse, C. Ramirez-Castro, V. Nicolosi, P.S. Grant, An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochim. Acta 91, 253–260 (2013)

    Article  Google Scholar 

  41. S.A. Khalate, R.S. Kate, H.M. Pathan, R.J. Deokate, Structural and electrochemical properties of spray deposited molybdenum trioxide (α-MoO3) thin films. J. Solid State Electrochem. 21(9), 2737–2746 (2017)

    Article  CAS  Google Scholar 

  42. L. Mai et al., Molybdenum oxide nanowires: synthesis & properties. Mater. Today 14(7–8), 346–353 (2011)

    Article  CAS  Google Scholar 

  43. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102–113 (1978)

    Article  CAS  Google Scholar 

  44. T.G. Abdullah, S.A. Sami, M.S. Omar, Temperature dependence of the energy band gap of CuSi2P3 semiconductor using PSOPW method. Mater. Sci.-Pol. 36(4), 553–562 (2018). https://doi.org/10.2478/msp-2018-0085

    Article  CAS  Google Scholar 

  45. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, Physical properties of sprayed antimony doped tin oxide thin films: the role of thickness. J. Semicond. 32(5), 053001 (2011)

    Article  Google Scholar 

  46. R.J. Deokate, C.H. Bhosale, K.Y. Rajpure, Synthesis and characterization of CdIn2O4 thin films by spray pyrolysis technique. J. Alloys Compd. 473(1–2), L20–L24 (2009)

    Article  CAS  Google Scholar 

  47. X. Cai, X.-G. Sang, Y. Song, D. Guo, X.-X. Liu, X. Sun, Activating the highly reversible Mo4+/Mo5+ Redox couple in amorphous molybdenum oxide for high-performance supercapacitors. ACS Appl. Mater. Interfaces 12(43), 48565–48571 (2020)

    Article  CAS  PubMed  Google Scholar 

  48. D. Murugesan, S. Prakash, N. Ponpandian, P. Manisankar, C. Viswanathan, Two dimensional α-MoO3 nanosheets decorated carbon cloth electrodes for high-performance supercapacitors. Colloids Surf. Physicochem. Eng. Asp. 569, 137–144 (2019). https://doi.org/10.1016/j.colsurfa.2019.02.062

    Article  CAS  Google Scholar 

  49. S. Wang, K. Dou, Y. Dong, Y. Zou, H. Zeng, Supercapacitor based on few-layer MoO3 nanosheets prepared by solvothermal method. Int. J. Nanomanufacturing 12(3–4), 404–414 (2016). https://doi.org/10.1504/IJNM.2016.079225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [GrantA297].

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.U.Nsude: Conceptualization, Methodology, Data curation, Validation, Experiments, Formal analysis, Investigation, and Writing original draft. H.E. Nsude, A.C. Nwanya: Validation, and Data curation. H.E. Nsude, A.C. Nwanya: Experiments and Data curation. Adil Alshoaibi: Conceptualization and Supervision. ABC Ekwealor & H.E. Nsude: Validation and Formal analysis. ABC Ekwealor & Fabian I. Ezema: Validation and Formal analysis. Fabian I. Ezema: Conceptualization, Supervision, Validation, and Formal analysis.

Corresponding author

Correspondence to Fabian I. Ezema.

Ethics declarations

Competing interests

The authors declare that they have no relevant financial or non-financial conflict of interests.

Ethical approval

This paper meets the ethical standards of this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nsude, K.U., Nsude, H.E., Nwanya, A.C. et al. Molybdenum trioxide for supercapacitor application: defining the role of temperature and electrolyte. J Mater Sci: Mater Electron 35, 1399 (2024). https://doi.org/10.1007/s10854-024-13029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13029-x

Navigation