Log in

Influences of low In alloying and aging on microstructure and plastic deformation behavior of Sn-58Bi solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The SnBi eutectic solder shows high ductility at low strain rate, while plastic deformation of the Sn-rich phase in it is restrained due to the high content of the brittle Bi-rich phase and the fine interlocked lamellar structure, thus the impact toughness of the SnBi solder is poor. In this study, 1.5 wt% of In was added into the Sn-58Bi eutectic solder, and the influences of In alloying and aging on microstructure, deformation and fracture behaviors of the SnBi solder were deeply investigated. The results reveal that both the In alloying and aging can coarsen the SnBi solder and change the interlocked lamellar structure. The tensile elongation of the SnBiIn solder is much higher than that of the SnBi solder, and can be further improved after aging, with a little decrease in strength. The SnBi solder deforms mainly through grain boundary and phase boundary sliding, and fractures in a brittle mode, with cleavage of the Bi-rich phase and little plastic deformation in the Sn-rich phase. In contrast, serious deformation and fragmentation of the Sn-rich phase occurs in the SnBiIn solder even under a lower stress, especially for the aged SnBiIn solder, which not only due to coarsen of the microstructure and less discontinuous of the Bi-rich phase, but also soften of the Sn-rich phase. The impact toughness of the SnBiIn solder is improved, with fits with the increase in tensile elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data will be made available on request.

References

  1. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000). https://doi.org/10.1016/S0927-796X(00)00010-3

    Article  Google Scholar 

  2. S.F. Cheng, C.M. Huang, M. Pecht, Microelectron. Reliab. 75, 77 (2017). https://doi.org/10.1016/j.microrel.2017.06.016

    Article  CAS  Google Scholar 

  3. S. **, M. McCormack, Mater. Lett. 20, 91 (1994). https://doi.org/10.1016/0167-577X(94)90067-1

    Article  CAS  Google Scholar 

  4. I. Artaki, U. Ray, H.M. Gordon, M.S. Gervasio, Thermochim. Acta 198, 7 (1992). https://doi.org/10.1016/0040-6031(92)85053-X

    Article  CAS  Google Scholar 

  5. E. Dalton, G. Ren, J. Punch, M.N. Collins, Mater. Des. 154, 184 (2018). https://doi.org/10.1016/j.matdes.2018.05.030

    Article  CAS  Google Scholar 

  6. M.N. Collins, E. Dalton, J. Punch, J. Alloy. Compd. 688, 164 (2016). https://doi.org/10.1016/j.jallcom.2016.07.191

    Article  CAS  Google Scholar 

  7. Y. Liu, K.N. Tu, Mater. Today Adv. 8, 100115 (2020). https://doi.org/10.1016/j.mtadv.2020.100115

    Article  Google Scholar 

  8. N. Jiang, L. Zhang, L.L. Gao, X.G. Song, P. He, J. Mater. Sci. Mater. Electron. 32, 22731 (2021). https://doi.org/10.1007/s10854-021-06820-7

    Article  CAS  Google Scholar 

  9. S. Sahasrabudhe, S. Mokler, M. Renavikar, S. Sane, K. Byrd, E. Brigham, O. **, P. Goonetilleke, N. Badwe, S. Parupalli, in 2018 IEEE 68th Electronic Components and Technology Conference (2018), pp. 1455–1464. https://doi.org/10.1109/ECTC.2018.00222

  10. F.J. Wang, H. Chen, Y. Huang, L.T. Liu, Z.J. Zhang, J. Mater. Sci. Mater. Electron. 30, 3222 (2019). https://doi.org/10.1007/s10854-019-00701-w

    Article  CAS  Google Scholar 

  11. X. Chen, J. Zhou, F. Xue, Y. Yao, Mater. Sci. Eng. A 662, 251 (2016). https://doi.org/10.1016/j.msea.2016.03.072

    Article  CAS  Google Scholar 

  12. Q.K. Zhang, H.F. Zou, Z.F. Zhang, J. Electron. Mater. 40, 2320 (2011). https://doi.org/10.1007/s11664-011-1742-6

    Article  CAS  Google Scholar 

  13. P.L. Liu, J.K. Shang, J. Mater. Res. 16, 1651 (2001). https://doi.org/10.1557/JMR.2001.0229

    Article  CAS  Google Scholar 

  14. H.F. Zou, Q.K. Zhang, Z.F. Zhang, Scr. Mater. 61, 308 (2009). https://doi.org/10.1016/j.scriptamat.2009.04.009

    Article  CAS  Google Scholar 

  15. F.Q. Hu, Q.K. Zhang, J.J. Jiang, Z.L. Song, Mater. Lett. 214, 142 (2018). https://doi.org/10.1016/j.matlet.2017.11.127

    Article  CAS  Google Scholar 

  16. X.L. Wu, J.W. Wu, X.J. Wang, J. Yang, M. **a, B. Liu, J. Mater. Sci. 55, 3092 (2020). https://doi.org/10.1007/s10853-019-04148-6

    Article  CAS  Google Scholar 

  17. L.Z. Yang, W. Zhou, Y. Ma, X.Z. Li, Y.H. Liang, W.Q. Cui, P. Wu, Mater. Sci. Eng. A 667, 368 (2016). https://doi.org/10.1016/j.msea.2016.05.015

    Article  CAS  Google Scholar 

  18. J. Shen, Y.Y. Pu, H.G. Yin, D.J. Luo, J. Chen, J. Alloys Compd. 614, 63 (2014). https://doi.org/10.1016/j.jallcom.2014.06.015

    Article  CAS  Google Scholar 

  19. G. Ren, I.J. Wilding, M.N. Collins, J. Alloy. Compd. 665, 251 (2016). https://doi.org/10.1016/j.jallcom.2016.01.006

    Article  CAS  Google Scholar 

  20. X. Huang, L. Zhang, C. Chen, X. Lu, X. Wang, J. Mater. Res. Technol. 27, 2641 (2023). https://doi.org/10.1016/j.jmrt.2023.10.111

    Article  CAS  Google Scholar 

  21. L. Zhang, Z.Q. Liu, J. Mater. Sci. Mater. Electron. 31, 2466 (2020). https://doi.org/10.1007/s10854-019-02784-x

    Article  CAS  Google Scholar 

  22. S. Sakuyama, T. Akamatsu, K. Uenishi, T. Sato, Trans. Jpn. Inst. Electron. Packag. 2, 98 (2009). https://doi.org/10.5104/jiepeng.2.98

    Article  CAS  Google Scholar 

  23. E.E.M. Noor, N.M. Sharif, C.K. Yew, T. Ariga, A.B. Ismail, Z. Hussian, J. Alloys Compd. 507, 290 (2010). https://doi.org/10.1016/j.jallcom.2010.07.182

    Article  CAS  Google Scholar 

  24. J. Yang, Q.K. Zhang, Z.L. Song, J. Electron. Mater. 50, 283 (2020). https://doi.org/10.1007/s11664-020-08595-9

    Article  CAS  Google Scholar 

  25. S.N. Zhang, W.M. Long, P.Y. Li, F.L. Liu, H.Y. Xue, T.R. Ding, J. Mater. Sci. Mater. Electron. 35, 690 (2024). https://doi.org/10.1007/s10854-024-12405-x

    Article  CAS  Google Scholar 

  26. O. Mokhtari, H. Nishikawa, Mater. Sci. Eng. A 651, 831 (2016). https://doi.org/10.1016/j.msea.2015.11.038

    Article  CAS  Google Scholar 

  27. X. Chen, F. Xue, J. Zhou, Y. Yao, J. Alloy. Compd. 633, 377 (2015). https://doi.org/10.1016/j.jallcom.2015.01.219

    Article  CAS  Google Scholar 

  28. Z. Wang, Q.K. Zhang, Y.X. Chen, Z.L. Song, J. Mater. Sci. Mater. Electron. 30, 18524 (2019). https://doi.org/10.1007/s10854-019-02206-y

    Article  CAS  Google Scholar 

  29. V.T. Witusiewicz, U. Hecht, B. Böttger, S. Rex, J. Alloys Compd. 428, 115 (2007). https://doi.org/10.1016/j.jallcom.2006.03.050

    Article  CAS  Google Scholar 

  30. O. Mokhtari, H. Nishikawa, J. Electron. Mater. 43, 4158 (2014). https://doi.org/10.1007/s11664-014-3359-z

    Article  CAS  Google Scholar 

  31. L.F. Li, Y.K. Cheng, G.L. Xu, E.Z. Wang, Z.H. Zhang, H. Wang, Mater. Des. 64, 15 (2014). https://doi.org/10.1016/j.matdes.2014.07.035

    Article  CAS  Google Scholar 

  32. J.W. Chen, M.Q. Liao, F.J. Wang, J. Mater. Sci. Mater. Electron. 34, 1558 (2023). https://doi.org/10.1007/s10854-023-10971-0

    Article  CAS  Google Scholar 

  33. Q.K. Zhang, F.Q. Hu, Z.L. Song, Z.F. Zhang, Mater. Sci. Eng. A 701, 187 (2017). https://doi.org/10.1016/j.msea.2017.06.083

    Article  CAS  Google Scholar 

  34. Q.K. Zhang, Z.F. Zhang, Mater. Sci. Eng. A 528, 2686 (2011). https://doi.org/10.1016/j.msea.2010.12.041

    Article  CAS  Google Scholar 

  35. V.L. Nguyen, S.H. Kim, J.W. Jeong, T.S. Lim, D.Y. Yang, K.B. Kim, Y.J. Kim, J.H. Lee, Y.J. Kim, S. Yang, Electron. Mater. Lett. 13, 420 (2017). https://doi.org/10.1007/s13391-017-1614-1

    Article  CAS  Google Scholar 

  36. M.L. Huang, Q. Zhou, N. Zhao, L.D. Chen, J. Mater. Sci. Mater. Electron. 24, 2624 (2013). https://doi.org/10.1007/s10854-013-1143-0

    Article  CAS  Google Scholar 

  37. Q. Li, N. Ma, Y.P. Lei, J. Lin, H.G. Fu, J. Gu, J. Electron. Mater. 45, 5800 (2016). https://doi.org/10.1007/s11664-016-4366-z

    Article  CAS  Google Scholar 

  38. Q. Wang, S.S. Cai, S.Y. Yang, Y.J. Yu, Y.K. Wan, J.B. Peng, J.J. Wang, X.J. Wang, J. Mater. Sci. Mater. Electron. 35, 576 (2024). https://doi.org/10.1007/s10854-024-12302-3

    Article  CAS  Google Scholar 

  39. G. Ren, M.N. Collins, Metals 9, 462 (2019). https://doi.org/10.3390/met9040462

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Key Research and Development Project of Ningbo City under grant No. 2023Z017.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [He Zhang]. The first draft of the manuscript was written by [He Zhang], [Qingke Zhang] and all authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Qingke Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, Q. & Song, Z. Influences of low In alloying and aging on microstructure and plastic deformation behavior of Sn-58Bi solder. J Mater Sci: Mater Electron 35, 1185 (2024). https://doi.org/10.1007/s10854-024-13017-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13017-1

Navigation