Log in

Synthesis and characterizations of l-lysinium trichloroacetate crystals of versatile scaling for temperature sensor and opto-electronic utilities

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

l-Lysinium trichloroacetate-LLYSTCA is well grown by solution growth methodology and is milled for 12 h to get micro-scaled LLYSTCA and is irradiated with Co-60 source for 500 Gy value. The period of growth of the bulk crystal is 34 days, the lattice constants are a = 5.7288 (2) Å; b = 9.0422 (3) Å; c = 12.4999 (4) Å; α = γ = 90°; and β as 97.253 (1)° and volume as 647.50 Å3. The crystal is of monoclinic form and space group as P21. The elemental configuration by computational as well as by CHNSO mode is performed for LLYSTCA and reported. The (110) display profile and computational proviso for the LLYSTCA are performed and reported. The Band gap of LLYSTCA macro-crystal is determined by Tauc’s plot and the direct band gap is 4.45 eV and is 4.46 eV by formula-based calculations, which specifies it for photonic use. Compared with KDP, the macro, micro, and 500 Gy LLYSTCA are 1.01, 1.04, and 1.06 times of second-order nonlinear optical (NLO) effect, and the phase matching effective conditions of the samples are 70.7 mV, 72.8 mV, and 74.2 mV for macro, micro, and 500 Gy cases. The filter influxes of macro, micro, and 500 Gy LLYSTCA are 4.7892, 5.1213, and 5.4589 microns for opto-electronic filters giving the variance that depends on the size of the sample. The lowest value of dielectric constant with increased frequencies is appropriate for electro-optic instrumentation use. The largest values of dielectric loss at lower range of frequencies were aroused from space-charge polarization performance of dipoles. The LLYSTCA macro-crystal exposes negative photo-conductivity nature. The sample is specified for Halosian of atomic projections and pixel-projected use with sensor-based applications to analyze for macro and 500 Gy crystalline samples of LLYSTCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All the data are included and no separate repository or representation of data.

References

  1. G. Ramesh Kumar, S. Gokul Raj, R. Mohan, R. Jayavel, J. Cryst. Growth 283, 193–197 (2015). https://doi.org/10.1016/j.jcrysgro.2005.04.103

    Article  CAS  Google Scholar 

  2. H.J. Ravindra, M.R.S. Kumar, C. Rai, S.M. Dharmaprakash, J. Cryst. Growth 294, 318–322 (2006). https://doi.org/10.1016/j.jcrysgro.2006.05.084

    Article  CAS  Google Scholar 

  3. K.J. Arun, S. Jayalekshmi, J. Miner. Mater. Charact. Eng. 8, 635–646 (2009). https://doi.org/10.4236/jmmce.2009.88055

    Article  Google Scholar 

  4. K. SenthilKannan, Results Chem. (2022). https://doi.org/10.1016/j.rechem.2022.100424

    Article  Google Scholar 

  5. K. SenthilKannan, S. Gunasekaran, K.A. Seethalakshmi, Int. J. Sci. Eng. Res. 4, 2–4 (2013)

    Google Scholar 

  6. K. Kumar et al., J. Mater. Sci.: Mater. Electron. 31, 20816–20823 (2020). https://doi.org/10.1007/s10854-020-04594-y

    Article  CAS  Google Scholar 

  7. R. Senthilkumar, K. Senthilkannan, S. Udhayakumar, S.T. Aadithya Narayanan, Mater. Today Proc. 33, 4167 (2020). https://doi.org/10.1016/j.matpr.2020.06.594

    Article  CAS  Google Scholar 

  8. S. Dhanuskodi, S. Manivannan, J. Cryst. Growth 262, 395–398 (2013). https://doi.org/10.1016/j.jcrysgro.2003.10.088

    Article  CAS  Google Scholar 

  9. S. Gunasekaran, K. SenthilKannan, S. Loganathan, Indian J. Phys. 87, 1189–1197 (2013). https://doi.org/10.1007/s12648-013-0363-8

    Article  CAS  Google Scholar 

  10. S.M. Tyumentsev, RSt.J. Mark Foreman, B.-M. Steenari, M.Z. Alexandra Slawin, Acta Cryst. E 73, 1576–1579 (2017). https://doi.org/10.1107/S2056989017013962

    Article  CAS  Google Scholar 

  11. V. Sathiya, K. Suganya, K. SenthilKannan et al., J. Mater. Sci.: Mater. Electron. 33, 19514 (2022). https://doi.org/10.1007/s10854-022-08787-5

    Article  CAS  Google Scholar 

  12. K. Suganya, J. Maalmarugan, R. Manikandan et al., J. Mater. Sci.: Mater. Electron. 33, 19320 (2022). https://doi.org/10.1007/s10854-022-08770-0

    Article  CAS  Google Scholar 

  13. A. Mbonyiryivuze, B. Mwakikunga, S.M. Dhlamini, M. Maaza, Phys. Mater. Chem. 3(2), 25–29 (2015). https://doi.org/10.12691/pmc-3-2-2

    Article  CAS  Google Scholar 

  14. S. Suguna, Y. Subbareddy, T. Jaison Jose, N. Ramakrishna Chand, D.S. Ramakrishna, P. Lakshmi Praveen, J. Mol. Struct. 1300, 137295 (2024)

    Article  CAS  Google Scholar 

  15. P. Das, T.J. Jose, A. Ghosh et al., Eur. Phys. J. E 45, 98 (2022). https://doi.org/10.1140/epje/s10189-022-00254-7

    Article  CAS  PubMed  Google Scholar 

  16. V. Periyasamy, R.R. Babu, A. Ahmad, M.D. Albaqami, R.G. Alotabi, E. Elamurugu, ACS Omega 7(39), 35191–35203 (2022). https://doi.org/10.1021/acsomega.2c04303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. V. Periyasamy, R.B. Ramraj, I. Hasan, P. Subramanian, I. Kim, S. Paramasivam, Z. Phys. Chem. (2024). https://doi.org/10.1515/zpch-2023-0491

    Article  Google Scholar 

  18. W.T. Hsu, Z.B. Chen, C.C. Wu, R.K. Choubey, C.W. Lan, Materials 5(2), 227–238 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Lavanya, N. Dege, E.B. Poyraz et al., J. Mater. Sci.: Mater. Electron. 35, 315 (2024). https://doi.org/10.1007/s10854-024-12054-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank St.Joseph’s College Trichy for the studies; IITM for single-crystal XRD data, Phoenix group for consultancy of computational and electronic work, sensor work assisted by Dr Renganathan B—IITM.

Funding

The paper attracts no funding and has authors’ own funding for this paper.

Author information

Authors and Affiliations

Authors

Contributions

Meena M.—computational data for devices. SenthilKannan K.—crystal growth, sensor, electronic work, and write-up correspondence, submission. Swarnalatha V.—spectral data. Radha K.S.—crystal solving for structure by software.

Corresponding author

Correspondence to K. SenthilKannan.

Ethics declarations

Conflict of interest

There is no conflict among authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, M., SenthilKannan, K., Swarnalatha, V. et al. Synthesis and characterizations of l-lysinium trichloroacetate crystals of versatile scaling for temperature sensor and opto-electronic utilities. J Mater Sci: Mater Electron 35, 688 (2024). https://doi.org/10.1007/s10854-024-12438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12438-2

Navigation