Log in

Electronic signature of the Y3+ ions in some yttrium-doped soda borate glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current study focuses on the role of Y3+ ions in a glass system of the structure 70%B2O3–(30 − x)%Na2O–x%Y2O3 (with 0 ≤ x ≤ 2.5 mol%). As well as investigating their contribution to the electric conductivity, dielectric and magnetic properties. The electrical conductivity and dielectric properties are investigated in the temperature range from 330 to 530 K, and at frequency range from100 Hz to 735 kHz. The dc conductivity (σdc) is found to increase from 3.7 × 10–11 to 1.6 × 10–5 S m−1, with activation energy (ΔE) values lying between 0.52 and 1 eV. The ac conductivity (σac) is found to vary between 8.9 × 10–9 and 9.1 × 10–4 S m−1. A continuous nonlinear decrease of the frequency exponent (s) with increasing of the temperature is detected. The experimental results are fairly fitted to the correlated barrier hop** (CBH) with density of pair sites varies around 2 × 1021 eV−1 cm−3, and activation energy for relaxation increases with the increasing of Y2O3 in the glasses. Finally, the addition of Y3+ ions to the sodium borate glass is found to convert the magnetic susceptibility from para- to dia-magnetic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Abdullah, K. Azman, H. Azhan, W. Razali, optical characterization of erbium doped sodium borate glass, in Advanced Materials Research (Trans Tech Publications, Zurich, 2013), pp. 191–194

  2. P. Babu, C. Jayasankar, Optical spectroscopy of Eu3+ ions in lithium borate and lithium fluoroborate glasses. Physica B 279, 262–281 (2000)

    CAS  Google Scholar 

  3. K. Marimuthu, S. Surendra Babu, G. Muralidharan, S. Arumugam, C. Jayasankar, Structural and optical studies of Eu3+ ions in alkali borate glasses. Physica Status Solidi 206, 131–139 (2009)

    CAS  Google Scholar 

  4. M. Maqableh, S. Hashim, Y. Alajerami, M. Mhareb, R. Dawwud, A. Saidu, Spectroscopy, The effect of europium oxide impurity on the optical and physical properties of lithium potassium borate glass. Optics 117, 56–60 (2014)

    CAS  Google Scholar 

  5. S. Rojas, J. De Souza, K. Yukimitu, A.C. Hernandes, Structural, thermal and optical properties of CaBO and CaLiBO glasses doped with Eu3+. J. Non-Cryst. Solids 398, 57–61 (2014)

    Google Scholar 

  6. O. Majérus, H. Trégouët, D. Caurant, D. Pytalev, Comparative study of the rare earth environment in rare earth metaborate glass (REB3O6, RE = La, Nd) and in sodium borate glasses. J. Non Cryst. Solids 425, 91–102 (2015)

    Google Scholar 

  7. K. Swapna, S. Mahamuda, A.S. Rao, T. Sasikala, P. Packiyaraj, L.R. Moorthy, G.V. Prakash, Luminescence characterization of Eu3+ doped zinc alumino bismuth borate glasses for visible red emission applications. J. Lumin. 156, 80–86 (2014)

    CAS  Google Scholar 

  8. D. Kothandan, R.J. Kumar, Optical properties of rare earth doped borate glasses. Int. J. ChemTech Res. 8, 310–314 (2015)

    CAS  Google Scholar 

  9. A.M. Al-Baradi, E. Wahab, K.S. Shaaban, Preparation and characteristics of B2O3–SiO2–Bi2O3–TiO2–Y2O3 glasses and glass-ceramics. Silicon 14, 5277–5287 (2021)

    Google Scholar 

  10. M. Wang, H. Wang, W. Li, X. Hu, K. Sun, Z. Zang, Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. J Mater Chem A 7, 26421–26428 (2019)

    CAS  Google Scholar 

  11. K.S. Shaaban, Tunning the crystallization behavior of B2O3–SiO2–Bi2O3–TiO2–Y2O3 glasses. https://doi.org/10.21203/rs.3.rs-346000/v1

  12. G. Nechaev, S. Vlasova, I. Kovyazina, O. Reznitskich, Transport properties of the sodium-yttrium-silicate glasses. J. Non-Cryst. Solids 445, 30–33 (2016)

    Google Scholar 

  13. E.M. Ahmed, A. Mohamed, M.I. Youssif, N.A. El-Ghamaz, M.M. El-shabaan, Effect of Y3+ on the structural and photoluminescence properties of yttrium-doped sodium borate glass. Luminescence 37, 1455–1464 (2022)

    CAS  Google Scholar 

  14. M. Wang, A. Li, X. Zhang, D. Zhang, S. **, D. **ong, W. Deng, Tailoring effect of Y2O3 on water resistance of Na2O–ZnO–Al2O3–B2O3 glasses. J. Rare Earths 40, 1316–1322 (2022)

    CAS  Google Scholar 

  15. L.S. Rao, M.S. Reddy, D.K. Rao, N. Veeraiah, Influence of redox behavior of copper ions on dielectric and spectroscopic properties of Li2O–MoO3–B2O3:CuO glass system. Solid State Sci. 11, 578–587 (2009)

    CAS  Google Scholar 

  16. M. Dawy, A. Salama, Electrical and optical properties of some sodium borate glasses. Mater. Chem. Phys. 71, 137–147 (2001)

    CAS  Google Scholar 

  17. R. Shannon, B. Taylor, T. Gier, H. Chen, T. Berzins, Ionic conductivity in sodium yttrium silicon oxide (Na5YSi4O12)-type silicates. Inorg. Chem. 17, 958–964 (1978)

    CAS  Google Scholar 

  18. T. Asahi, M. Kamada, S. Imai, S. Nakayama, Synthesis of Na2O–RE2O3–SiO2 (RE = Sm, Gd, Dy, Y, Ho, Er and Yb) system glasses and their electrical properties. J. Ceram. Soc. Jpn. 108, 774–776 (2000)

    CAS  Google Scholar 

  19. S. Nakayama, T. Asahi, H. Kiyono, Y.L. Aung, M. Sakamoto, Electrical properties of (Na2O)35.7 (Re2O3)7.2 (SiO2)57.1 (Re = Y, Sm, Gd, Dy, Ho, Er and Yb) glasses and ceramics. J. Eur. Ceram. Soc. 26, 1605–1610 (2006)

    CAS  Google Scholar 

  20. S. Nakayama, T. Watanabe, T. Asahi, H. Kiyono, Y.L. Aung, M. Sakamoto, Influence of rare earth additives and boron component on electrical conductivity of sodium rare earth borate glasses. Ceram. Int. 36, 2323–2327 (2010)

    CAS  Google Scholar 

  21. J.-C. Shu, Y.-L. Zhang, Y. Qin, M.-S. Cao, Oxidative molecular layer deposition tailoring eco-mimetic nanoarchitecture to manipulate electromagnetic attenuation and self-powered energy conversion. Nano-Micro Lett. 15, 142 (2023)

    CAS  Google Scholar 

  22. J. Zhao, Y. Lu, J. Kang, Y. Qu, G. Khater, S. Li, Y. Wang, Y. Yue, Effect of Y2O3 and La2O3 on structure and dielectric properties of aluminoborosilicate glasses. J. Non-Cryst. Solids 496, 1–5 (2018)

    CAS  Google Scholar 

  23. M.G. Alexander, B. Riley, Ion conducting glasses in the Na2O-Y2O3-SiO2 and Li2O-Y2O3-SiO2 systems. Solid State Ionics 18, 478–482 (1986)

    Google Scholar 

  24. I. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969)

    CAS  Google Scholar 

  25. X.-Y. Fang, X.-X. Yu, H.-M. Zheng, H.-B. **, L. Wang, M.-S. Cao, Temperature-and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys. Lett. A 379, 2245–2251 (2015)

    CAS  Google Scholar 

  26. E. Ahmed, M. Youssif, A. Elzelaky, Electrical conductivity and breakdown properties of some erbium oxide doped phosphovanadate glasses. J. Mater. Sci. Mater. Electron. 31, 12216–12225 (2020)

    CAS  Google Scholar 

  27. Y.-J. Li, S.-L. Li, P. Gong, Y.-L. Li, X.-Y. Fang, Y.-H. Jia, M.-S. Cao, Nanostructures, Effect of surface dangling bonds on transport properties of phosphorous doped SiC nanowires. Physica E 104, 247–253 (2018)

    CAS  Google Scholar 

  28. S.S. Zulkefly, H.M. Kamari, M.N.A. Abdul Azis, W.M.D. Wan Yusoff, Influence of erbium do** on dielectric properties of zinc borotellurite glass system. Mater. Sci. Forum 846, 161–171 (2016)

    Google Scholar 

  29. A. Ali, M. Shaaban, Optical and electrical properties of Nd3+ doped TeBiY borate glasses. SILICON 10, 1503–1511 (2018)

    CAS  Google Scholar 

  30. M. Shaaban, A. Ali, Density, electrical and optical properties of yttrium-containing tellurium bismuth borate glasses. J. Electron. Mater. 43, 4023–4032 (2014)

    CAS  Google Scholar 

  31. P. Prezas, M. Soares, F. Freire, M. Graça, Structural, electrical and dielectric characterization of TeO2–WO3–Y2O3–Er2O3–Yb2O3 glasses. Mater. Res. Bull. 68, 314–319 (2015)

    CAS  Google Scholar 

  32. E. Ahmed, Electric and dielectric properties of CdSO4-doped borate glasses. Int. J. Mod. Phys. B 33, 1950011 (2019)

    CAS  Google Scholar 

  33. V. Kumar, O. Pandey, K. Singh, Effect of A2O3 (A= La, Y, Cr, Al) on thermal and crystallization kinetics of borosilicate glass sealants for solid oxide fuel cells. Ceram. Int. 36, 1621–1628 (2010)

    CAS  Google Scholar 

  34. A. Atta, H. Wahba, A.A. Alkathiri, A. Waly, B. Al-hasni, E. Ahmed, Chemistry, on the electric and dielectric properties of some boro-lead sulphate glasses, glass. Physics 48, 187–201 (2022)

    Google Scholar 

  35. A. Jonscher, The interpretation of non-ideal dielectric admittance and impedance diagrams. Physica Status Solidi 32, 665–676 (1975)

    CAS  Google Scholar 

  36. A. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982)

    CAS  Google Scholar 

  37. S. Elliott, Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987)

    CAS  Google Scholar 

  38. Y.-H. Jia, P. Gong, S.-L. Li, W.-D. Ma, X.-Y. Fang, Y.-Y. Yang, M.-S. Cao, Effects of hydroxyl groups and hydrogen passivation on the structure, electrical and optical properties of silicon carbide nanowires. Phys. Lett. A 384, 126106 (2020)

    CAS  Google Scholar 

  39. N.C.R. Babu, M. Valente, N.N. Rao, M. Graça, G.N. Raju, M. Piasecki, I. Kityk, N. Veeraiah, Low temperature dielectric dispersion and electrical conductivity studies on Fe2O3 mixed lithium yttrium silicate glasses. J. Non-Cryst. Solids 358, 3175–3186 (2012)

    Google Scholar 

  40. N.S. Prabhu, K. Vighnesh, S. Bhardwaj, A. Awasthi, G. Lakshminarayana, S.D. Kamath, Correlative exploration of structural and dielectric properties with Er2O3 addition in BaO–ZnO–LiF–B2O3 glasses. J. Alloys Compd. 832, 154996 (2020)

    CAS  Google Scholar 

  41. F. Abdel-Wahab, M. Aziz, A. Mostafa, E. Ahmed, Electrical conductivity and dielectric properties of some vanadium–strontium–iron unconventional oxide glasses. Mater. Sci. Eng. B 134, 1–8 (2006)

    CAS  Google Scholar 

  42. K. Mokhtar, K. Mohamed, G. Lakhdar, B. Sébastien, A. Hamza, Electrical conductivity and dielectric properties of rare earth ions (Ce3+, Pr3+ and Eu3+) doped in zinc sodium phosphate glass. J. Non-Cryst. Solids 567, 120933 (2021)

    CAS  Google Scholar 

  43. L. Dissado, Dielectric response, in Springer Handbook of Electronic and Photonic Materials (Springer, Cham, 2017), pp. 1–1.

  44. R. Vaish, K. Varma, Dielectric behavior of sodium borate glasses. Ionics 17, 727–731 (2011)

    CAS  Google Scholar 

  45. Y.-Y. Yang, P. Gong, W.-D. Ma, R. Hao, X.-Y.J.C.P.B. Fang, Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes. Chin. Phys. 30, 067803 (2021)

    CAS  Google Scholar 

  46. L. Zhang, Y. Lu, J. Kang, Q. Shi, Y. Wang, Y. Qu, Y. Yue, Selection of optimum composition of aluminoborosilicate glasses with excellent dielectric properties according to orthogonal experiment design. J. Mater. Sci. Mater. Electron. 29, 5746–5752 (2018)

    CAS  Google Scholar 

  47. V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach. J. Solid State Chem. 163, 100–112 (2002)

    CAS  Google Scholar 

  48. E. Ahmed, E.A. Gaml, Effect of Pb/B ion replacement in B2O3.PbO.Fe2O3.Na2O glasses: optical, magnetic, and fluorescence properties. Opt. Mater. 116, 111075 (2021)

    CAS  Google Scholar 

  49. D. Aboutaleb, B. Safi, Structure and properties of the soda-borate glasses: effect of adding Fe2O3 concentration. J. Chem. Eng. Process. Technol. 7, 1–6 (2016)

    Google Scholar 

  50. Y. Alajerami, K. Abushab, S. Alagha, M. Mhareb, A. Saidu, F. Kodeh, K. Ramadan, Physical and optical properties of sodium borate glasses doped with Dy3+ ions. Int. J. Mod. Phys. B 31, 1750171 (2017)

    CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a significant contribution to the research reported and have read and approved the submitted manuscript, and furthermore, all those who made substantive contributions to this work have been included in the author list.

Corresponding author

Correspondence to Ehab Moustafa Ahmed.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Research involving human participants and/or animals

No human participants and/or animals in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, E.M., Mohamed, A., Youssif, M.I. et al. Electronic signature of the Y3+ ions in some yttrium-doped soda borate glasses. J Mater Sci: Mater Electron 34, 2106 (2023). https://doi.org/10.1007/s10854-023-11467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11467-7

Navigation