Log in

Effect of lead oxide on the electrical transport properties of lithium–iron–borate glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrical conductivity and dielectric properties of the glass system (70-x) B2O3–(x) Pb3O4–10Fe2O3–20Li2O [where 0 ≤ x ≤ 35] have been investigated in the temperature range from 300 to 530 K, at four fixed frequencies [0.12, 1, 10, and 100 kHz]. Ac conductivity is found to obey the universal relation, σ(ω) = Aωs, where s is the frequency exponent factor and its value is less than unity. Investigation of σac results and the s factor reveals that the polarons hop** over barrier between Fe2+ and Fe3+ ions is the probable applicable mechanism for σac for these glasses. The dc activation energy values are found to increase from 0.67 to 1.61 eV as the lead oxide content increases. These remarks are explained using Mössbauer Effect (ME) spectrometer and molar volume calculations. The observed higher records of the dielectric constant for the lead-free sample could be attributed to some precipitated iron in the form of α-Fe2O3, which increases the polarized space charges in the glass network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data and material are available.

References

  1. E.M. Ahmed, F. Abdel-Wahab, Unified conduction mechanism in unconventional VZnCaFeO glasses. Phys. B Condens. Matter 449, 246–250 (2014)

    Article  CAS  Google Scholar 

  2. E.M. Ahmed, N.A. El-Ghamaz, A.M. Edres, J. Mat. Sci.: Mat. Elect. 29, 15191–15202 (2018)

    CAS  Google Scholar 

  3. M.S. Aziz, F. Abdel-Wahab, A.G. Mostafa, E.M. El-Agwany, Mater. Chem. Phys. 91, 532 (2005)

    Article  CAS  Google Scholar 

  4. E.M. Ahmed, N.A. El-Ghamaz, S.M. Albhbah, J. Non-Cryst Solids 558, 120659 (2021)

    Article  CAS  Google Scholar 

  5. W. Xu, C. Qin, S. Zhang, H. Liang, W. Lei, Z. Luo, A. Lu, J. Alloys Compd. 853, 157191 (2021)

    Article  CAS  Google Scholar 

  6. A.G. Mostafa, F. Abdel-Wahab, G.A. Yahya, J. Mat. Sci.: Matt. In Elect. 13, 721 (2002)

    CAS  Google Scholar 

  7. K.H. Sadok, M. Haouari, O. Gallot-Lavallée, H.B. Ouada, J. Alloys Comp d. 778, 878–888 (2019)

    Article  CAS  Google Scholar 

  8. E.M. Ahmed, M.I. Youssif, A.A. Elzelaky, J. Mat. Sci.: Mat Elect. 31, 12216–12225 (2020)

    CAS  Google Scholar 

  9. F. Abdel-Wahab, M.S. Aziz, A.G. Mostafa, E.M. Ahmed, Mater. Sci. Eng., B 134, 1–8 (2006)

    Article  CAS  Google Scholar 

  10. L. Murawski, J. Matt. Sci. 17, 2155 (1982)

    Article  CAS  Google Scholar 

  11. P. Brahma, S. Banerjee, S. Chakraborty, D. Chakravorty, J. Appl. Phys. 88, 6526 (2000)

    Article  CAS  Google Scholar 

  12. P.V. Singh, N.M. Badiger, Glass Phys. Chem. 41, 276–283 (2015)

    Article  CAS  Google Scholar 

  13. A.S. Abouhaswa, R. El-Mallawany, Y.S. Rammah, Radiat. Phys. Chem. 177, 109085 (2020)

    Article  CAS  Google Scholar 

  14. A. Thulasiramudu, S. Buddhudu, J. Quantitative Spectrosc. Radiat. Transf. 102, 212–227 (2006)

    Article  CAS  Google Scholar 

  15. H. Wen, P.A. Tanner, Opt. Mater. 33, 1602–1606 (2011)

    Article  CAS  Google Scholar 

  16. R. Sharma, A.S. Rao, J. Non-Cryst. Solids 495, 85–94 (2018)

    Article  CAS  Google Scholar 

  17. B. Sujatha, C. Narayana Reddy, Turkish J. Phys. 30(3), 189–195 (2006)

    CAS  Google Scholar 

  18. B. Fultz, Mössbauer spectrometry, in Characterization of materials. (Wiley, Hoboken, 2002), pp. 1–21

    Google Scholar 

  19. Y. Yoshida, G. Langouche (eds.), Mössbauer Spectroscopy (Springer-Verlag, Berlin Heidelberg, Berlin, 2013)

    Google Scholar 

  20. T.C. Gibb, Principles of Mössbauer Spectroscopy (Springer, Berlin, 2013).

    Google Scholar 

  21. F. Abdel-Wahab, A.G. Mostafa, A.E. Belal, E.M. El-Agwany, Mater. Chem. Phys. 93(1), 243–250 (2005)

    Article  CAS  Google Scholar 

  22. N.A. Eissa, W.M. El-Meliegy, S.M. El-Minyawi, N.H. Sheta, H.A. Sallam, Phys. Chem. Glasses 34, 1 (1993)

    CAS  Google Scholar 

  23. C.R. Karkjian, J. Non-Cryst, Solids 3, 137 (1970)

    Google Scholar 

  24. N.A. Eissa, N.H. Sheta, H.H. El-Bahnasawy, T.Z. Amer, H.A. Sallam, J. Radioanal. Nucl. Chem. 247(2), 311 (2001)

    Article  CAS  Google Scholar 

  25. N.A. Eissa, H.A. Sallam, W.M. El-Meligy, Hyperfine Interact. 55, 939 (1990)

    Article  CAS  Google Scholar 

  26. T. Nishida, Y. Zhang, H. Veiwei, J. Non-Cryst, Solids 112, 163 (1989)

    Google Scholar 

  27. L. Yunfei, Z. Yan, H. Weiwei, L. kunquan, Z. Yaqin, J. Non-Cryst. Solids 112, 136 (1989)

    Article  Google Scholar 

  28. M.I. Oshtrakh, O.B. Milder, V.A. Semionkin, P.G. Prokopenko, A.B. Livshits, A.A. Kozlov, A.I. Pikulev, Zeitschrift für Naturforschung A 57(6–7), 566–574 (2002)

    Article  CAS  Google Scholar 

  29. M. Pollak, T.H. Geballe, Phys. Rev. 122, 1742 (1961)

    Article  CAS  Google Scholar 

  30. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  CAS  Google Scholar 

  31. G.E. Pike, Phys. Rev. B 6, 1572 (1972)

    Article  CAS  Google Scholar 

  32. S.R. Elliott, Adv. Phys. 37, 135 (1987)

    Article  Google Scholar 

  33. E.M. Ahmed, B. Al-hasni, J. Microwave Power Electrom. Energy 54, 291–311 (2020)

    Article  Google Scholar 

  34. K.S. Cole, R.S. Cole, J. Chem. Phys. 9, 341 (1941)

    Article  CAS  Google Scholar 

  35. N. E. Hill, E. Vaughan, A. H. Price, M. Davies (1969) Dielectr. Properties Mole. Behav. (London van Nostrand Reinhold Co.).

  36. P. Bergo, W.M. Pontuschka, J.M. Prison, Solid State Commun. 142, 545 (2007)

    Article  Google Scholar 

  37. M. Graca, M.A. Valente, M.G. da Ferreira silva, J Non-Cryst. Solids 325, 267 (2003)

    CAS  Google Scholar 

  38. E.M. Ahmed, Int. J. Mod. Phys. B 33(04), 1950011 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors expresses their sincere thanks to the Taif University Researchers Supporting Project number (TURSP-2020/05), Taif University, Taif, Saudi Arabia. Also, the authors introduce their deep thanks to Professor Dr. Ahmed Gamal-Eldeen Mostafa of Al-Azhar University for his helpful discussion.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Ahmed.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.M., Ahmed, E.M., Abdel-wahab, F. et al. Effect of lead oxide on the electrical transport properties of lithium–iron–borate glasses. J Mater Sci: Mater Electron 32, 16069–16078 (2021). https://doi.org/10.1007/s10854-021-06155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06155-3

Navigation