Log in

Effect of yttrium on the structural, dielectric, and magnetic properties of Co-doped ZnO magnetic nanorods for potential spintronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have synthesized Yttrium and Cobalt-co-doped ZnO nanorods (NRs) by co-precipitation method and studied the effect of Yttrium and Cobalt co-do** on the structure, dielectric, and magnetic responses. X-ray diffraction and transmission electron microscopy suggested a decrease in lattice parameters and an increase in the particle size of all Co-ZnO nanorods. It was observed that high co-do** decreased the dielectric properties and increased the electrical conductivity due to the generation of free charge carriers through the substitution of Yttrium and Cobalt ions in the host ZnO. It was also discovered that co-doped ZnO Nanorods experienced a considerable transformation that was defined by the shift from ZnO’s diamagnetic behavior to room-temperature ferromagnetism (RTFM) behavior. In the ZnO lattice samples, room-temperature ferromagnetism (RTFM) has been mostly created by vacancies and zinc interstitials due to the do** of transition metals. However, with changes in dopant concentration only from 1 to 4% and then 5%, remanent magnetization (Mr) first increased from 0.038 emu/g to 0.118emu/g and then decreased drastically to 0.0346emu/g. It was found that the increasing O2 vacancies are highly associated with the improved magnetic and electric characteristics of the sample of Zn0.91Y0.05Co0.04O. It was discovered that Zn0.91Y0.05Co0.04O nanotubes have higher electrical conductivity and magnetic properties than pure ZnO. This strong dielectric and ferromagnetism response implies that the charge carriers’ hop** is responsible for this transport, which is commonly referred to as a high-frequency devices and diluted magnetic semiconductors supporting spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The paper is not submitted priorly or simultaneously to anywhere and no part is presented or published. All the data are included and no separate repository or representation of data.

References

  1. Y. Hao, S. Lou, S. Zhou, Y. Wang, X. Chen, G. Zhu et al., Novel magnetic behavior of Mn-doped ZnO hierarchical hollow spheres. J. Nanopart. Res. 14(1), 1–9 (2012)

    Article  Google Scholar 

  2. G.A. Prinz, Magnetoelectronics Sci. 282(5394), 1660–1663 (1998)

    CAS  Google Scholar 

  3. R. Khan, K. Althubeiti, A.M. Afzal, N. Rahman, S. Fashu, W. Zhang et al., Structure and magnetic properties of (Co, Ce) co-doped ZnO-based diluted magnetic semiconductor nanoparticles. J. Mater. Sci.: Mater. Electron. 32, 24394–24400 (2021)

    CAS  Google Scholar 

  4. P. Li, S. Wang, J. Li, Y. Wei, Structural and optical properties of co-doped ZnO nanocrystallites prepared by a one-step solution route. J. Lumin. 132(1), 220–225 (2012)

    Article  CAS  Google Scholar 

  5. R. Khan, V. Tirth, A. Ali, K. Irshad, N. Rahman, A. Algahtani et al., Effect of Sn-do** on the structural, optical, dielectric and magnetic properties of ZnO nanoparticles for spintronics applications. J. Mater. Sci.: Mater. Electron. 32(16), 21631–21642 (2021)

    CAS  Google Scholar 

  6. X. Wang, L. Zhu, L. Zhang, J. Jiang, Z. Yang, Z. Ye et al., Properties of Ni doped and Ni–Ga co-doped ZnO thin films prepared by pulsed laser deposition. J. Alloys Compd. 509(7), 3282–3285 (2011)

    Article  CAS  Google Scholar 

  7. J. Fu, X. Ren, S. Yan, Y. Gong, Y. Tan, K. Liang et al., Synthesis and structural characterization of ZnO doped with Co. J. Alloys Compd. 558, 212–221 (2013)

    Article  CAS  Google Scholar 

  8. Y.-M. Hao, S.-Y. Lou, S.-M. Zhou, R.-J. Yuan, G.-Y. Zhu, N. Li, Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles. Nanoscale Res. Lett. 7, 1–9 (2012)

    Article  Google Scholar 

  9. A. Stroppa, X. Duan, M. Peressi, Structural and magnetic properties of Mn-doped GaAs (1 1 0) surface. Mater. Sci. Eng. B 126(2–3), 217–221 (2006)

    Article  CAS  Google Scholar 

  10. Y. Chang, D. Wang, X. Luo, X. Xu, X. Chen, L. Li et al., Synthesis, optical, and magnetic properties of diluted magnetic semiconductor zn 1 – x mn x O nanowires via vapor phase growth. Appl. Phys. Lett. 83(19), 4020–4022 (2003)

    Article  CAS  Google Scholar 

  11. Y. Ohno, D. Young, F. Beschoten Ba, Matsukura, H. Ohno, D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature. 402(6763), 790–792 (1999)

    Article  CAS  Google Scholar 

  12. Q. Wang, Q. Sun, P. Jena, Ab initio study of electronic and magnetic properties of the C-codoped Ga 1 – x mn x N (10 1¯ 0) surface. Phys. Rev. B 75(3), 035322 (2007)

    Article  Google Scholar 

  13. C.F. Klingshirn, C.F. Klingshirn, Optical properties of bound and localized excitons and of defect states. Semicond. Opt. (2012). https://doi.org/10.1007/978-3-642-28362-8_14

    Article  Google Scholar 

  14. X. Xu, C. Cao, Structure and ferromagnetic properties of co-doped ZnO powders. J. Magn. Magn. Mater. 321(14), 2216–2219 (2009)

    Article  CAS  Google Scholar 

  15. T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9(12), 965–974 (2010)

    Article  CAS  Google Scholar 

  16. L. Sun, F. Yan, H. Zhang, J. Wang, G. Wang, Y. Zeng et al., Room-temperature ferromagnetism and in-plane magnetic anisotropy characteristics of nonpolar GaN: mn films. Appl. Surf. Sci. 255(16), 7451–7454 (2009)

    Article  CAS  Google Scholar 

  17. G. Husnain, F. Tao, S.-D. Yao, Structural and magnetic properties of co + implanted n-GaN dilute magnetic semiconductors. Phys. B: Condens. Matter. 405(9), 2340–2343 (2010)

    Article  CAS  Google Scholar 

  18. Z. Lu, H.-S. Hsu, Y. Tzeng, J.-C.-A. Huang, Carrier-mediated ferromagnetism in single crystalline (Co, Ga)-codoped ZnO films. Appl. Phys. Lett. 94(15), 152507 (2009)

    Article  Google Scholar 

  19. N.G. Szwacki, J. Majewski, T. Dietl, Aggregation and magnetism of Cr, Mn, and Fe cations in GaN. Phys. Rev. B 83(18), 184417 (2011)

    Article  Google Scholar 

  20. V. Gandhi, R. Ganesan, H.H. Abdulrahman Syedahamed, M. Thaiyan, Effect of cobalt do** on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J. Phys. Chem. C 118(18), 9715–9725 (2014)

    Article  CAS  Google Scholar 

  21. T. Oshio, K. Masuko, A. Ashida, T. Yoshimura, N. Fujimura, Effect of Mn do** on the electric and dielectric properties of ZnO epitaxial films. J. Appl. Phys. 103(9), 093717 (2008)

    Article  Google Scholar 

  22. J.-J. Xu, Y.-N. Lu, F.-F. Tao, P.-F. Liang, P.-A. Zhang, ZnO nanoparticles modified by carbon quantum dots for the photocatalytic removal of synthetic pigment pollutants. ACS omega 8(8), 7845–7857 (2023)

    Article  CAS  Google Scholar 

  23. A. Jr Franco, H. Pessoni, P. Ribeiro, F. Machado, Magnetic properties of co-doped ZnO nanoparticles. J. Magn. Magn. Mater. 426, 347–350 (2017)

    Article  CAS  Google Scholar 

  24. J. Beltrán, C. Barrero, A. Punnoose, Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 17(23), 15284–15296 (2015)

    Article  Google Scholar 

  25. R. Ebrahimifard, M.R. Golobostanfard, H. Abdizadeh, Sol–gel derived Al and Ga co-doped ZnO thin films: an optoelectronic study. Appl. Surf. Sci. 290, 252–259 (2014)

    Article  CAS  Google Scholar 

  26. A. Goktas, F. Aslan, B. Yeşilata, Ä. Boz, Physical properties of solution processable n-type Fe and Al co-doped ZnO nanostructured thin films: role of Al do** levels and annealing. Mater. Sci. Semiconduct. Process. 75, 221–233 (2018)

    Article  CAS  Google Scholar 

  27. S. Goktas, A. Goktas, A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: a review. J. Alloys Compd. 863, 158734 (2021)

    Article  CAS  Google Scholar 

  28. D. Akcan, S. Ozharar, E. Ozugurlu, L. Arda, The effects of Co/Cu co-doped ZnO thin films: an optical study. J. Alloys Compd. 797, 253–261 (2019)

    Article  CAS  Google Scholar 

  29. M.P. Ahmad, A.V. Rao, K.S. Babu, G.N. Rao, Particle size effect on the dielectric properties of ZnO nanoparticles. Mater. Chem. Phys. 224, 79–84 (2019)

    Article  Google Scholar 

  30. R. Khan, M.-U. Rahman, S. Fashu, Effect of annealing temperature on the dielectric and magnetic response of (Co, Zn) co-doped SnO 2 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 2673–2679 (2017)

    CAS  Google Scholar 

  31. R. Khan, Y. Zaman, Effect of annealing on structural, dielectric, transport and magnetic properties of (Zn, Co) co-doped SnO 2 nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 4003–4010 (2016)

    CAS  Google Scholar 

  32. R. Khan, S. Fashu, M.-U. Rahman, Effects of Ni co-do** concentrations on dielectric and magnetic properties of (Co, Ni) co-doped SnO 2 nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 7725–7730 (2016)

    CAS  Google Scholar 

  33. M. Mansournia, S. Rafizadeh, S.M. Hosseinpour-Mashkani, Hydrothermal synthesis, characterization and light harvesting applications of zinc oxide nanostructures. J. Mater. Sci.: Mater. Electron. 26, 5839–5846 (2015)

    CAS  Google Scholar 

  34. A. Sukumaran, N. Sivanantham, E. Vinoth, N. Gopalakrishnan, Investigation of ferromagnetism and dual donor defects in Y-doped ZnO thin films. Phys. Scr. 97(10), 105804 (2022)

    Article  Google Scholar 

  35. F. Aslan, F. Arslan, A. Tumbul, A. Goktas, Synthesis and characterization of solution processed p-SnS and n-SnS2 thin films: effect of starting chemicals. Opt. Mater 127, 112270 (2022)

    Article  CAS  Google Scholar 

  36. T. Sapanathan, R.N. Raoelison, E. Padayodi, N. Buiron, M. Rachik, Depiction of interfacial characteristic changes during impact welding using computational methods: comparison between Arbitrary Lagrangian-Eulerian and Eulerian simulations. Mater. Design. 102, 303–312 (2016)

    Article  Google Scholar 

  37. M. Mansournia, S. Rafizadeh, S.M. Hosseinpour-Mashkani, An ammonia vapor-based approach to ZnO nanostructures and their study as photocatalyst material. Ceram. Int. 42(1), 907–916 (2016)

    Article  CAS  Google Scholar 

  38. B. Poornaprakash, S. Ramu, K. Subramanyam, Y. Kim, M. Kumar, M.S.P. Reddy, Robust ferromagnetism of ZnO:(ni + er) diluted magnetic semiconductor nanoparticles for spintronic applications. Ceram. Int. 47(13), 18557–18564 (2021)

    Article  CAS  Google Scholar 

  39. E. Pavoni, E. Mohebbi, D. Mencarelli, P. Stipa, E. Laudadio, L. Pierantoni, The effect of Y do** on monoclinic, orthorhombic, and cubic polymorphs of HfO2: a first principles study. Nanomaterials 12(23), 4324 (2022)

    Article  CAS  Google Scholar 

  40. T.M. Hammad, J.K. Salem, R.G. Harrison, Synthesis, characterization, and optical properties of Y-doped ZnO nanoparticles. Nano. 4(04), 225–232 (2009)

    Article  CAS  Google Scholar 

  41. I. Atribak, A. Bueno-López, A. García-García, Role of yttrium loading in the physico-chemical properties and soot combustion activity of ceria and ceria–zirconia catalysts. J. Mol. Catal. A: Chem. 300(1–2), 103–110 (2009)

    Article  CAS  Google Scholar 

  42. R. Khan, S. Fashu, Structural, dielectric and magnetic properties of (Al, Ni) co-doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 4333–4339 (2017)

    CAS  Google Scholar 

  43. A. Safeen, K. Safeen, M. Shafique, Y. Iqbal, N. Ahmed, M.A.R. Khan et al., The effect of Mn and Co dual-do** on the structural, optical, dielectric and magnetic properties of ZnO nanostructures. RSC Adv. 12(19), 11923–11932 (2022)

    Article  CAS  Google Scholar 

  44. R. Khan, S. Fashu, Y. Zaman, Magnetic and dielectric properties of (Co, Zn) co-doped SnO 2 diluted magnetic semiconducting nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 5960–5966 (2016)

    CAS  Google Scholar 

  45. H. GENCER, A. Goktas, M. Gunes, H. Mutlu, S. ATALAY, Electrical transport and magnetoresistance properties of La 0.67 ca 0.33 MnO 3 film coated on pyrex glass substrate. Int. J. Mod. Phys. B 22(05), 497–506 (2008)

    Article  CAS  Google Scholar 

  46. X. Huang, C. Wu, H. Lu, F. Ren, Q. Xu, H. Ou et al., Electrical instability of amorphous indium-gallium-zinc oxide thin film transistors under monochromatic light illumination. Appl. Phys. Lett. 100(24), 243505 (2012)

    Article  Google Scholar 

  47. S. Stojadinović, N. Tadić, R. Vasilić, Formation and characterization of ZnO films on zinc substrate by plasma electrolytic oxidation. Surf. Coat. Technol. 307, 650–657 (2016)

    Article  Google Scholar 

  48. G. Voicu, D. Miu, C.-D. Ghitulica, S.-I. **ga, A.-I. Nicoara, C. Busuioc et al., Co doped ZnO thin films deposited by spin coating as antibacterial coating for metallic implants. Ceram. Int. 46(3), 3904–3911 (2020)

    Article  CAS  Google Scholar 

  49. F. Mikailzade, H. Türkan, F. Önal, M. Zarbali, A. Göktaş, A. Tumbul, Structural and magnetic properties of polycrystalline Zn1 – x mn x O films synthesized on glass and p-type Si substrates using Sol–Gel technique. Appl. Phys. A 127(6), 408 (2021)

    Article  CAS  Google Scholar 

  50. L. Chouhan, S. Srivastava, A comprehensive review on recent advancements in d0 ferromagnetic oxide materials. Mater. Sci. Semiconduct. Process. 147, 106768 (2022)

    Article  CAS  Google Scholar 

  51. L. Chouhan, G. Bouzerar, S. Srivastava, D 0 ferromagnetism in Li-doped ZnO compounds. J. Mater. Sci.: Mater. Electron. 32, 6389–6397 (2021)

    CAS  Google Scholar 

  52. B. Dey, R. Narzary, S.K. Panda, J. Mallick, A. Mondal, S. Ravi et al., Room temperature d0 ferromagnetism, band-gap reduction, and high optical transparency in p-type K-doped ZnO compounds for spintronics applications. Mater. Sci. Semiconduct. Process. 148, 106798 (2022)

    Article  CAS  Google Scholar 

  53. B. Dey, R. Narzary, L. Chouhan, S. Bhattacharjee, B. Parida, A. Mondal et al., Crystal structure, optical and dielectric properties of Ag: ZnO composite-like compounds. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-021-07560-4

    Article  Google Scholar 

  54. R. Narzary, B. Dey, S.N. Rout, A. Mondal, G. Bouzerar, M. Kar et al., Influence of K/Mg co-do** in tuning room temperature d0 ferromagnetism, optical and transport properties of ZnO compounds for spintronics applications. J. Alloys Compd. 934, 167874 (2023)

    Article  CAS  Google Scholar 

  55. B. Dey, S.N. Rout, M. Kar, S. Srivastava, Room temperature d0 ferromagnetism of Ag: ZnO compounds. J. Supercond. Novel Magn. 36(2), 657–663 (2023)

    Article  CAS  Google Scholar 

  56. R. Narzary, B. Dey, L. Chouhan, S. Kumar, S. Ravi, S. Srivastava, Optical band gap tuning, zero dielectric loss and room temperature ferromagnetism in (Ag/Mg) co-doped SnO2 compounds for spintronics applications. Mater. Sci. Semiconduct. Process. 142, 106477 (2022)

    Article  CAS  Google Scholar 

  57. R. Narzary, B. Dey, S. Sen, B.N. Parida, A. Mondal, S. Ravi et al., Influence of Na/Mg co-do** in tuning microstructure, transport, optical, and magnetic properties of TiO2 compounds for spintronics applications. Magnetochemistry 8(11), 150 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The researchers would like to acknowledge the Deanship of Scientific Research, Taif University for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

AU, IUK, MA, KA, NR, SSA, and AK wrote this paper through their mutual discussion. AK and RK created the idea and submitted the paper.

Corresponding author

Correspondence to Rajwali Khan.

Ethics declarations

Competing interests

Hereby, we declare that the manuscript is our original work and not have been published or under editorial considerations anywhere else. The stated authors of the work have read the content and approved for submission of this manuscript to the Journal of Materials Science: Materials in Electronics. There is no personal or financial conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, A., Khan, I.U., Aljohani, M. et al. Effect of yttrium on the structural, dielectric, and magnetic properties of Co-doped ZnO magnetic nanorods for potential spintronic applications. J Mater Sci: Mater Electron 34, 1252 (2023). https://doi.org/10.1007/s10854-023-10664-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10664-8

Navigation