Log in

Nanoarchitectonics of cross-linked densified carbon nanotube yarn for stable conductivity and strain sensing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrical strain sensing and e-heating at low voltage with high stability is indeed an essential element for wearable smart textiles. These sensors can be used to detect slight changes in electrical signal due to small deformation caused by mechanical changes such as throat vibration, heart pulse, and body movement. Herein, we demonstrate a simple and systematic tactic to fabricate a carbon nanotube yarn (CNT yarn, CNTY) with excellent strength and superior electrical conductivity. We analyzed different crucial parameters to enhance the sensing response of CNTY by cross-linking method. A novel combined strategy was used to prepare cross-linked and densified CNTY for conductive properties. The modified CNTY showed enhanced sensing properties with a gauge factor improvement from 1.3 to 2.1 at ~ 3% strain. Furthermore, we also assessed the strain sensing behavior of CNTY sewed in the textiles garment. It was noticed that these modifications with cross-linking and densification provide a significant improvement in e-heating properties which open a new path to design and develop smart textiles with combined features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data recorded or investigated during this research work are mentioned in this article.

References

  1. M. Amjadi et al., Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 26(11), 1678–1698 (2016)

    Article  CAS  Google Scholar 

  2. T.Q. Trung et al., Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano. Res. 10(6), 2021–2033 (2017)

    Article  CAS  Google Scholar 

  3. H.R. Lim et al., Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32(15), 1901924 (2020)

    Article  CAS  Google Scholar 

  4. W.A.D.M. Jayathilaka et al., Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv. Mater. 31(7), 1805921 (2019)

    Article  Google Scholar 

  5. J.-H. Pu et al., 2D end-to-end carbon nanotube conductive networks in polymer nanocomposites: a conceptual design to dramatically enhance the sensitivities of strain sensors. Nanoscale 10(5), 2191–2198 (2018)

    Article  CAS  Google Scholar 

  6. K. Suzuki et al., Rapid-response, widely stretchable sensor of aligned MWCNT/elastomer composites for human motion detection. Acs Sens. 1(6), 817–825 (2016)

    Article  CAS  Google Scholar 

  7. N. López-Salas, M. Antonietti, Carbonaceous materials: the beauty of simplicity. Bull. Chem. Soc. Jpn. 94(12), 2822–2828 (2021)

    Article  Google Scholar 

  8. Y. **ao et al., Precision measurements of temperature-dependent and Nonequilibrium Thermal Emitters. Laser Photonics Rev. 14(8), 1900443 (2020)

    Article  Google Scholar 

  9. Y. Ding et al., Hollow Cu2O nanospheres loaded with MoS2/reduced graphene oxide nanosheets for ppb-level NO2 detection at room temperature. J. Hazard. Mater. 416, 126218 (2021)

    Article  CAS  Google Scholar 

  10. Y. Cui et al., XPM-Induced vector asymmetrical soliton with spectral period doubling in mode-locked fiber laser. Laser and Photonics Rev. 15(3), 2000216 (2021)

    Article  CAS  Google Scholar 

  11. J. Wei et al., Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (cu 2 O/rGO) nanocomposites. Opt. Lett. 42(5), 911–914 (2017)

    Article  CAS  Google Scholar 

  12. J. You et al., Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photonics Rev. 14(12), 2000239 (2020)

    Article  CAS  Google Scholar 

  13. M.F. De Volder et al., Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)

    Article  Google Scholar 

  14. F. Xu et al., In-plane mechanical properties of carbon nanotube films fabricated by floating catalyst chemical vapor decomposition. J. Mater. Sci. 50(24), 8166–8174 (2015)

    Article  CAS  Google Scholar 

  15. Q. Zhang et al., A shapeable, ultra-stretchable rubber strain sensor based on carbon nanotubes and ag flakes via melt-mixing process. J. Mater. Chem. B 9(16), 3502–3508 (2021)

    Article  CAS  Google Scholar 

  16. L. Liu, Q. Yang, J. Shen, Correlation between porosity and electrical-mechanical properties of carbon nanotube buckypaper with various porosities. J. Nanomat. (2015). https://doi.org/10.1155/2015/945091

    Article  Google Scholar 

  17. A. Lekawa-Raus et al., Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 24(24), 3661–3682 (2014)

    Article  CAS  Google Scholar 

  18. J.-Z. Chen et al., Ultrafast synthesis of carbon-nanotube counter electrodes for dye-sensitized solar cells using an atmospheric-pressure plasma jet. Carbon 98, 34–40 (2016)

    Article  Google Scholar 

  19. T. Goto et al., Movable cross-linked elastomer with aligned carbon nanotube/nanofiber as high thermally conductive tough flexible composite. Compos. Sci. Technol. 190, 108009 (2020)

    Article  CAS  Google Scholar 

  20. W. Li et al., Effect of thermal treatments on structures and mechanical properties of aerogel-spun carbon nanotube fibers. Mater. Lett. 183, 117–121 (2016)

    Article  CAS  Google Scholar 

  21. Y. Zhao et al., Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci. Rep. 1(1), 1–5 (2011)

    Article  Google Scholar 

  22. B. Mu et al., Relation of the electrical conductivity and the thermal conductivity to the young’s modulus of buckypapers. Int. J. Thermophys. 42(4), 1–11 (2021)

    Article  Google Scholar 

  23. W. Chen et al., Characterization and comparison of properties of cryogenic conditioned CNT reinforced thermoset (epoxy) and thermoplastic (poly vinyl alcohol) composite yarns. J. Composite Mater. (2021). https://doi.org/10.1177/00219983211041764

    Article  Google Scholar 

  24. Y. Jang et al., Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 32(5), 1902670 (2020)

    Article  CAS  Google Scholar 

  25. H. Ma et al., Wet cryogenic modification of the carbon nanotube assembly inspired by frozen chinese Doufu recipe. Mater. Lett. 303, 130421 (2021)

    Article  CAS  Google Scholar 

  26. H. Ma et al., Light-weight strain sensor based on carbon nanotube/epoxy composite yarn. J. Mater. Sci. 56(23), 13156–13164 (2021)

    Article  CAS  Google Scholar 

  27. W. Liu et al., Strain sensing fabric integrated with carbon nanotube yarn for wearable applications. Text. Res. J. 89(15), 3048–3055 (2019)

    Article  CAS  Google Scholar 

  28. F.I. Farha et al., Microstructural tuning of twisted carbon nanotube yarns through the wet-compression process implications for multifunctional textiles. ACS Appl. Nano Mater. 5(8), 11071–11079 (2022)

    Article  CAS  Google Scholar 

  29. Y.R. Lee et al., Improved mechanical and electrical properties of carbon nanotube yarns by wet impregnation and multi-ply twisting. Fibers Polym. 19(12), 2478–2482 (2018)

    Article  CAS  Google Scholar 

  30. K. Liu et al., Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 21(4), 045708 (2009)

    Article  Google Scholar 

  31. Z. Wang et al., Bioinspired microstructure-reorganized behavior of carbon nanotube yarn induced by cyclic stretching training. J. Mater. Chem. C 8(1), 117–123 (2020)

    Article  Google Scholar 

  32. W. Li et al., Flexible strain sensor based on aerogel-spun carbon nanotube yarn with a core-sheath structure. Compos. Part A: Appl. Sci. Manufac. 108, 107–113 (2018)

    Article  CAS  Google Scholar 

  33. A. Ahmed et al., Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor. J. Mater. Sci.: Mater. Electron. 30(15), 14007–14021 (2019)

    CAS  Google Scholar 

  34. L. Qiu et al., Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers. Carbon 105, 248–259 (2016)

    Article  CAS  Google Scholar 

  35. G.S. Kumar, T.U. Patro, Tuning the piezoresistive strain-sensing behavior of poly (vinylidene fluoride)–CNT composites: the role of polymer–CNT interface and composite processing technique. J. Appl. Polym. Sci. 139(3), 51516 (2022)

    Article  CAS  Google Scholar 

  36. H. Dong et al., Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with Bilayer Conductive structure for human motion detection. ACS Appl. Mater. Interfaces 14(13), 15504–15516 (2022)

    Article  CAS  Google Scholar 

  37. H.E. Misak et al., Functionalization of carbon nanotube yarn by acid treatment. Int. J. Smart Nano Mater. 5(1), 34–43 (2014)

    Article  Google Scholar 

  38. M.G. Burdanova et al., Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. Nanomaterials 11(11), 3020 (2021)

    Article  CAS  Google Scholar 

  39. S. Saleemi et al., Bio-inspired hierarchical carbon nanotube yarn with ester bond cross-linkages towards high conductivity for multifunctional applications. Nanomaterials 12(2), 208 (2022)

    Article  CAS  Google Scholar 

  40. R. Maheswaran, B.P. Shanmugavel, A critical review of the role of carbon nanotubes in the progress of next-generation electronic applications. J. Electronic Mater. 51, 1–15 (2022)

    Article  Google Scholar 

  41. A.A. Moosa, A.M. Ridha, I.N. Abdullha, Chromium ions removal from wastewater using carbon nanotubes. Int. J. Innovative Res. Sci. Technol. 4(2), 275–282 (2015)

    Google Scholar 

  42. X. Liang et al., Enhancing the strength, toughness, and electrical conductivity of twist-spun carbon nanotube yarns by π bridging. Carbon 150, 268–274 (2019)

    Article  CAS  Google Scholar 

  43. K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes. small 1(2), 180–192 (2005)

    Article  CAS  Google Scholar 

  44. F.A. Abuilaiwi et al., Modification and functionalization of multiwalled carbon nanotube (MWCNT) via fischer esterification. Arab. J. Sci. Eng. 35(1), 37–48 (2010)

    CAS  Google Scholar 

  45. I.A. Ventura, J. Zhou, G. Lubineau, Investigating the inter-tube conduction mechanism in polycarbonate nanocomposites prepared with conductive polymer-coated carbon nanotubes. Nanoscale Res. Lett. 10(1), 1–5 (2015)

    Article  CAS  Google Scholar 

  46. S. Choi et al., A study on reducing contact resistance in solution-processed organic field-effect transistors. ACS Appl. Mater. Interfaces 8(37), 24744–24752 (2016)

    Article  CAS  Google Scholar 

  47. X. Liu et al., Highly tough and strain sensitive plasma functionalized carbon nanotube/epoxy composites. Compos. Part A: Appl. Sci. Manufac. 121, 123–129 (2019)

    Article  CAS  Google Scholar 

  48. I.A. Rashid et al., Stretchable strain sensors based on polyaniline/thermoplastic polyurethane blends. Polym. Bull. 77(3), 1081–1093 (2020)

    Article  CAS  Google Scholar 

  49. F. Guo et al., Fabrication of highly conductive carbon nanotube fibers for electrical application. Mater. Res. Express 2(9), 095604 (2015)

    Article  Google Scholar 

  50. T. Theodosiou, D. Saravanos, Numerical investigation of mechanisms affecting the piezoresistive properties of CNT-doped polymers using multi-scale models. Compos. Sci. Technol. 70(9), 1312–1320 (2010)

    Article  CAS  Google Scholar 

  51. N. Hu et al., Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56(13), 2929–2936 (2008)

    Article  CAS  Google Scholar 

  52. C.D. Hernandez et al., Multifunctional characteristics of carbon nanotube (CNT) yarn composites. In Multifunctional Nanocomposites and Nanomaterials International Conference (2006). https://doi.org/10.1115/MN2006-17028

  53. R. Zhang et al., Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sens. Actuators A: Phys. 179, 83–91 (2012)

    Article  CAS  Google Scholar 

  54. Z. Tang et al., Highly stretchable core–sheath fibers via wet-spinning for wearable strain sensors. ACS Appl. Mater. Interfaces 10(7), 6624–6635 (2018)

    Article  CAS  Google Scholar 

  55. X. Wei et al., Highly stretchable electro-conductive yarn via wrap** carbon nanotube yarn on multifilament polyester yarn. J. Ind. Text. 51(3_suppl), 4589S–4602S (2022)

    Article  CAS  Google Scholar 

  56. S.I. Cha et al., Mechanical and electrical properties of cross-linked carbon nanotubes. Carbon 46(3), 482–488 (2008)

    Article  CAS  Google Scholar 

  57. J. Chen et al., Advances in responsively conductive polymer composites and sensing applications. Polym. Rev. 61(1), 157–193 (2021)

    Article  CAS  Google Scholar 

  58. M. Ehsani, P. Rahimi, Y. Joseph, Structure–function Relationships of Nanocarbon/Polymer Composites for Chemiresistive sensing: a review. Sensors 21(9), 3291 (2021)

    Article  CAS  Google Scholar 

  59. F. Xu et al., Highly stretchable, fast thermal response carbon nanotube composite heater. Compos. Part A: Appl. Sci. Manufac. 147, 106471 (2021)

    Article  CAS  Google Scholar 

  60. S.K. Pal et al., Thermal and electrical transport along MWCNT arrays grown on inconel substrates. J. Mater. Res. 23(8), 2099–2105 (2008)

    Article  CAS  Google Scholar 

  61. A. Khalid et al., Case study of MHD blood flow in a porous medium with CNTS and thermal analysis. Case Stud. Therm. Eng. 12, 374–380 (2018)

    Article  Google Scholar 

  62. L. Zhang et al., High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett. 12(9), 4848–4852 (2012)

    Article  CAS  Google Scholar 

  63. D. Wang et al., Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19(7), 075609 (2008)

    Article  Google Scholar 

  64. M.A. Aouraghe et al., Flexible, quickly responsive and highly efficient E-heating carbon nanotube film. Compos. Sci. Technol. 183, 107824 (2019)

    Article  CAS  Google Scholar 

  65. M.A. Aouraghe et al., Low-voltage activating, fast responding electro-thermal actuator based on carbon nanotube film/PDMS composites. Adv. Fiber Mater. 3(1), 38–46 (2021)

    Article  CAS  Google Scholar 

  66. P. Liu et al., Continuous carbon nanotube-based fibers and films for applications requiring enhanced heat dissipation. ACS Appl. Mater. Interfaces 8(27), 17461–17471 (2016)

    Article  CAS  Google Scholar 

  67. B. Kumanek, D. Janas, Thermal conductivity of carbon nanotube networks: a review. J. Mater. Sci. 54(10), 7397–7427 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author would like to thank the Shanghai Natural Science Foundation and Fundamental Research Funds for the Central Universities for their financial support.

Funding

This research work was funded by Shanghai Frontier Science Research Center for Modern Textiles, Donghua University, the Shanghai Natural Science Foundation (Grant No. 20ZR1402200) and Fundamental Research Funds for the Central Universities (Grant No. 2232021G-01).

Author information

Authors and Affiliations

Authors

Contributions

S.S. conceptualization, experiment, data collection, analysis, writing, editing. H.A.M. writing, editing. F.X. funding, reviewing, editing, and supervising. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fujun Xu.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3.1 kb)

Supplementary material 2 (DOCX 475.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleemi, S., Mannan, H.A. & Xu, F. Nanoarchitectonics of cross-linked densified carbon nanotube yarn for stable conductivity and strain sensing. J Mater Sci: Mater Electron 34, 24 (2023). https://doi.org/10.1007/s10854-022-09452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09452-7

Navigation