Log in

Characteristics of Electrical Heating and Sensing Properties for CNTs/GNs Polyester-Knitted Fabrics Based on Network Structure

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Flexible and multifunctional textile-based electronics have been promising for wearable devices. However, integrating excellent conductivity into textiles without sacrificing their fundamental flexibility and breathability remains challenging. In this work, the interconnected conductive networks are created with a knitted polyester fabric. The knitted fabric is spray coated with one-dimensional carbon nanotubes and two-dimensional graphene nanosheets to integrate unique metallic conductivity. The change in resistance of interconnected loops during stretching, their behavior, and electrical properties were analyzed. The resultant electrically conductive CNTs/GNs-knitted fabric offers an outstanding electrical conductivity of 36.5 S m−1 with superior Joule heating performance up to 282 °C at a supply voltage of 10 V. Moreover, the stitch structure of the fabric was simulated as a circuit model consisting of the course and wale yarn and their contact resistance. The simulated results agreed with the experimental data, and the significant trends of both results were consistent. The multifunctional, electrically conductive, and thermally stable CNTs/GNs-knitted fabric presented in this work is promising for potential applications in textile-based wearable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of the study are available from the corresponding author upon reasonable request.

Notes

  1. Figure 1.

  2. Figure 2.

  3. Figure 3.

  4. Figure 4.

  5. Figure 5.

  6. Figure 6.

  7. Figure 7.

  8. Figure 8.

  9. Figure 9.

References

  1. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.M. Tao, Adv. Mater. 26, 5310 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. G. Chen, Y. Li, M. Bick, J. Chen, Chem. Rev. 120, 3668 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. W. Weng, P. Chen, S. He, X. Sun, H. Peng, Angew. Chem. Int. Ed. Engl. 55, 6140 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Z. Yang, H. Sun, T. Chen, L. Qiu, Y. Luo, H. Peng, Angew. Chem. Int. Ed. Engl. 125, 7693 (2013)

    Article  Google Scholar 

  5. Z. Zhang, X. Li, G. Guan, S. Pan, Z. Zhu, D. Ren, H. Peng, Angew. Chem. Int. Ed. Engl. 53, 11571 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. C. Zhao, K. Shu, C. Wang, S. Gambhir, G.G. Wallace, Electrochim Acta. 172, 19 (2015)

    Article  Google Scholar 

  7. H. Lee, M.J. Glasper, X. Li, J.A. Nychka, J. Batcheller, H.J. Chung, Y. Chen, J. Mater. Sci. 53, 9026 (2018)

    Article  CAS  Google Scholar 

  8. H. Kim, S. Lee, H. Kim, Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  9. K.R. Reddy, S. Gandla, D. Gupta, Adv. Mater. Int. 6, 1900409 (2019)

    Article  Google Scholar 

  10. L. Sun, F. Wang, J. Jiang, H. Liu, B. Du, M. Li, Y. Liu, M. Li, Cellulose 27, 8923 (2020)

    Article  CAS  Google Scholar 

  11. X. Hong, W. Zhao, R. Yu, Q. Wang, F. Zeng, Y. Tao, Z. **, C. Zhu, J. Ind. Text. 15280837221076029 (2022).

  12. M. Zahid, E.L. Papadopoulou, A. Athanassiou, I.S. Bayer, Mater. Des. 135, 213 (2017)

    Article  CAS  Google Scholar 

  13. S. Afroj, N. Karim, Z. Wang, S. Tan, P. He, M. Holwill, S. Ghazaryan, A. Fernando, K.S. Noboselov, ACS Nano 13, 3847 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. X. Zhang, X. Wang, Z. Lei, L. Wang, M. Tian, S. Zhu, H. **ao, X. Tang, L. Qu, A.C.S. Appl, Mater. Int. 12, 14459 (2020)

    Article  CAS  Google Scholar 

  15. S. Iijima, Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  16. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339, 535 (2013)

    Article  PubMed  Google Scholar 

  17. Y. Jun, T. Kim, C.R. Park, Carbon 88, 60 (2015)

    Article  Google Scholar 

  18. K. Parikh, K. Cattanach, R. Rao, D.S. Suh, A. Wu, S.K. Manohar, Sens. Actuators B Chem. 113, 55 (2006)

    Article  CAS  Google Scholar 

  19. Y. Wang, Z. Yang, Z. Hou, D. Xu, L. Wei, E.S. Kong, Y. Zhang, Sens. Actuators B Chem. 150, 708 (2010)

    Article  CAS  Google Scholar 

  20. Z. Li, P. Dharap, S. Nagarajaiah, E.V. Barrera, J.D. Kim, Adv. Mater. 16, 640 (2004)

    Article  CAS  Google Scholar 

  21. L. Xu, Z. Liu, H. Zhai, X. Chen, R. Sun, S. Lyu, Y. Fan, Y. Yi, Z. Chen, L. **, J. Zhang, Y. Li, T.T. Ye, A.C.S. Appl, Mater. Int. 12, 13265 (2020)

    Article  CAS  Google Scholar 

  22. Y. Lu, M. Tian, X. Sun, N. Pan, F. Chen, S. Zhu, X. Zhang, S. Chen, Compos. Part A Appl. Sci. 117, 202 (2019)

    Article  CAS  Google Scholar 

  23. H. Ma, W. Wu, J. Cao, B. Yue, H. Zhang, Carbon 114, 731 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Zhejiang Provincial Natural Science Foundation of China (Grant no. LZJWY22B070003); Science Foundation of Zhejiang Sci-Tech University (Grant nos. 2020YBZX10 and 20202094-Y)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqin Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Song, Q., Chen, W. et al. Characteristics of Electrical Heating and Sensing Properties for CNTs/GNs Polyester-Knitted Fabrics Based on Network Structure. Fibers Polym 24, 1139–1148 (2023). https://doi.org/10.1007/s12221-023-00119-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00119-6

Keywords

Navigation