Log in

Excellent performance of electrical and supercapacitor application of cadmium cobalt ferrite nanoparticles synthesized by chemical co-precipitation technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This manuscript describes the CdxCo1−xFe2O4 nanoparticles that have synthesized using a chemical co-precipitation technique. The preparation of as-synthesized products was annealed at 600, 700, and 800 °C for 3 h. The structural, electrical, and electrochemical properties of the CdxCo1−xFe2O4 nanoparticles were also discussed. The TG–DTA analysis of the as-prepared Cd0.3Co0.7Fe2O4 NPs sample is examined. XRD studies reveal the cubical spinel shape of the CdxCo1−xFe2O4 nanoparticles. The functional group assignment of FTIR results shows the two absorption bands observed at 585 and 434 cm−1, which are connected with the vibration of stretching mode in the tetrahedral and octahedral sites. The surface morphology of NPs Cd0.3Co0.7Fe2O4 has been studied by FESEM and HRTEM, which specify that the nanoparticles were found in a crystalline and spherical structure. The EDAX analysis confirms the elementary composition, namely the presence of Cd, Co, Fe, and O. The electrical measurements were confirmed by dielectric constant (ε′), dielectric loss (tan δ), and AC conductivity with frequency in the range 50 Hz to 5 MHz and revealed that the dielectric constant and dielectric loss decrease with the increase of frequency, representing a decrease in polarization. The higher Ac conductivity value of 5.5 × 10–4 Sm−1 was observed for Cd0.3Co0.7Fe2O4 nanoparticles indicating the semi-conductive nature of the prepared samples. The CV analysis for the sample Cd0.3Co0.7Fe2O4 (x = 0.3) annealed at 600 °C reveals the highest Cs value of 395 Fg−1 was observed in the scan rate of 2 mVs−1 and concluded that it was suitable for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

References

  1. M.S. Chavali, M.P. Nikolova, Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 1(6), 1–30 (2019)

    Article  CAS  Google Scholar 

  2. S.P. Dalawai, T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, Structural properties of Cd–Co ferrites. Bull. Mater. Sci. 36(5), 919–922 (2013)

    Article  CAS  Google Scholar 

  3. V.A.M. Brabers, Progress in spinel ferrite research. Handb. Magn. Mater. 8, 189–324 (1995)

    Article  CAS  Google Scholar 

  4. A. Goldman, Recent advances in ferrite materials technology (Modern Ferrite Technology, Van Nostrand Reinhold, New York, 1990), p. 191

    Google Scholar 

  5. M.S.R. Prasad, B.B.V.S.V. Prasad, B. Rajesh, K.H. Rao, K.V. Ramesh, Magnetic properties and DC electrical resistivity studies on cadmium substituted nickel–zinc ferrite system. J. Magn. Magn. Mater. 323(16), 2115–2121 (2011)

    Article  CAS  Google Scholar 

  6. B. Pacakova, S. Kubickova, A. Reznickova, D.N. And, J. Vejpravova. Spinel ferrite nanoparticles: correlation of structure and magnetism. in: Magnetic Spinels – Synthesis, Properties and Applications. M Seehra (Ed.). IntechOpen Limited, London, UK (2017)

  7. M.S. Kumar, G.J. Shankarmurthy, E. Melagiriyappa, K.K. Nagaraja, A.R. Lamani, B.M. Harish, Dielectric and magnetic properties of high porous Gd+ 3 substituted nickel zinc ferrite nanoparticles. Mater. Res. Exp. 5(4), 046109 (2018)

    Article  CAS  Google Scholar 

  8. A. Radoń, D. Łukowiec, M. Kremzer, J. Mikuła, P. Włodarczyk, Electrical conduction mechanism and dielectric properties of spherical shaped Fe3O4 nanoparticles synthesized by co-precipitation method. Materials 11(5), 735 (2018)

    Article  CAS  Google Scholar 

  9. A. Aziz, E. Ahmed, M.N. Ashiq, M.A. Khan, N. Karamat, I. Ali, Structural, electrical, dielectric and magnetic properties of Mn-Nd substituted CoFeO3 nano sized multiferroics. Progress Nat. Sci.: Mater. Int. 26(4), 325–333 (2016)

    Article  CAS  Google Scholar 

  10. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)

    Article  CAS  Google Scholar 

  11. A.M. Zardkhoshoui, B. Ameri, S.S.H. Davarani, α-MnS@ Co3S4 hollow nanospheres assembled from nanosheets for hybrid supercapacitors. Chem. Eng. J. 422, 129953 (2021)

    Article  CAS  Google Scholar 

  12. A.M. Zardkhoshoui, S.S.H. Davarani, Construction of complex copper-cobalt selenide hollow structures as an attractive battery-type electrode material for hybrid supercapacitors. Chem. Eng. J. 402, 126241 (2020)

    Article  CAS  Google Scholar 

  13. J. Sharma, N. Sharma, J. Parashar, V.K. Saxena, D. Bhatnagar, K.B. Sharma, Dielectric properties of nanocrystalline Co-Mg ferrites. J. Alloy. Compd. 649, 362–367 (2015)

    Article  CAS  Google Scholar 

  14. P.P. Mohapatra, S. Pittala, P. Dobbidi, Temperature dependent broadband dielectric, magnetic and electrical studies on Li1xMg2xFe5-xO8 for microwave devices. J. Market. Res. 9(3), 2992–3004 (2020)

    CAS  Google Scholar 

  15. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys. 112(8), 084321 (2012)

    Article  CAS  Google Scholar 

  16. P. Kashid, M. Shedam, A.B. Kulkarni, S.N. Mathad, R. Shedam, Synthesis and structural studies of nano Co0.85Cd0.15Fe2O4 Ferrite by Co-precipitation method. J. Adv. Phys. 6(4), 545–548 (2017)

    Article  Google Scholar 

  17. S. Farhadi, F. Siadatnasab, Synthesis and structural characterization of magnetic cadmium sulfide–cobalt ferrite nanocomposite, and study of its activity for dyes degradation under ultrasound. J. Mol. Struct. 1123, 171–179 (2016)

    Article  CAS  Google Scholar 

  18. S. Jauhar, A. Goyal, N. Lakshmi, K. Chandra, S. Singhal, Do** effect of Cr3+ ions on the structural, magnetic and electrical properties of Co–Cd ferrites: a study on the redistribution of cations in CoCd0.4CrxFe1.6−xO4 (0.1≤ x ≤ 0.6) ferrites. Mater. Chem. Phys. 139(2–3), 836–843 (2013)

    Article  CAS  Google Scholar 

  19. P. Laokul, S. Arthan, S. Maensiri, E. Swatsitang, Magnetic and optical properties of CoFe2O4 nanoparticles synthesized by reverse micelle microemulsion method. J. Supercond. Novel Magn. 28(8), 2483–2489 (2015)

    Article  CAS  Google Scholar 

  20. P.N. Vasambekar, C.B. Kolekar, A.S. Vaingankar, Magnetic behaviour of Cd2+ and Cr3+ substituted cobalt ferrites. Mater. Chem. Phys. 60(3), 282–285 (1999)

    Article  CAS  Google Scholar 

  21. C.V. Reddy, C. Byon, B. Narendra, B. Dudem, J. Shim, S.J. Moon, S.P. Vattikuti, Effect of calcination temperature on cobalt substituted cadmium ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 26(7), 5078–5084 (2015)

    Google Scholar 

  22. R. Ahmad, I. Hussain, G.M. Zarrar, H. Anwar, M. Bilal Khan Naizd, A. Khan, Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application by wet chemical co-precipitation technique. J. Magn. Magn. Mater. 405, 28–35 (2016)

    Article  CAS  Google Scholar 

  23. A.K. Nikumbh, A.V. Nagawade, V.B. Tadke, P.P. Bakare, Electrical, magnetic and Mössbauer properties of cadmium-cobalt ferrites prepared by the tartarate precursor method. J. Mater. Sci. 36(3), 653–662 (2001)

    Article  CAS  Google Scholar 

  24. S. Noor, M.A. Hakim, S.S. Sikder, S.M. Hoque, K.H. Maria, P. Nordblad, Magnetic behavior of Cd2+ substituted cobalt ferrites. J. Phys. Chem. Solids 73(2), 227–231 (2012)

    Article  CAS  Google Scholar 

  25. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures, 2nd edn. (Wiley, New York, 1994), p. 437

    Google Scholar 

  26. M. Gharibshahian, M.S. Nourbakhsh, O. Mirzaee, Evaluation of the superparamagnetic and biological properties of microwave assisted synthesized Zn & Cd doped CoFe2O4 nanoparticles via Pechini sol–gel method. J. Sol-Gel. Sci. Technol. 85(3), 684–692 (2018)

    Article  CAS  Google Scholar 

  27. E. Hema, B.R. Venkatraman, Effect of Cd2+ on structural, morphological and magnetic studies of spinel CoFe2O4 nanoparticles. Adv. Sci. Eng. Med. 8(11), 856–861 (2016)

    Article  CAS  Google Scholar 

  28. H. Kaur, A. Singh, V. Kumar, D.S. Ahlawat, Structural, thermal and magnetic investigations of cobalt ferrite doped with Zn2+ and Cd2+ synthesized by auto combustion method. J. Magn. Magn. Mater. 474, 505–511 (2019)

    Article  CAS  Google Scholar 

  29. S. Singhal, S. Jauhar, K. Chandra, S. Bansal, Spin canting phenomenon in cadmium doped cobalt ferrites, CoCdxFe2−xO4 (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), synthesized using sol–gel auto combustion method. Bull. Mater. Sci. 36(1), 107–114 (2013)

    Article  CAS  Google Scholar 

  30. S.P. Vattikuti, C. Byon, J. Shim, C.V. Reddy, Effect of temperature on structural, morphological and magnetic properties of Cd0.7Co0.3Fe2O4 nanoparticles. J. Magn. Magn. Mater. 393, 132–138 (2015)

    Article  CAS  Google Scholar 

  31. A.R. West, Solid state chemistry and its applications (John Wiley & Sons, 2014)

    Google Scholar 

  32. S. Modak, M. Ammar, F. Mazaleyrat, S. Das, P.K. Chakrabarti, XRD, HRTEM and magnetic properties of mixed spinel nanocrystalline Ni–Zn–Cu-ferrite. J. Alloy. Compd. 473(1–2), 15–19 (2009)

    Article  CAS  Google Scholar 

  33. P. Sivagurunathan, S.R. Gibin, Preparation and characterization of nanosized cobalt ferrite particles by co-precipitation method with citrate as chelating agent. J. Mater. Sci.: Mater. Electron. 27(9), 8891–8898 (2016)

    CAS  Google Scholar 

  34. C.V. Reddy, S.V. PrabhakarVattikuti, R.V.S.S.N. Ravikumar, S.J. Moon, J. Shim, Influence of calcination temperature on Cd0.3Co0.7Fe2O4 nanoparticles: structural, thermal and magnetic properties. J. Magn. Magn. Mater. 394, 70–76 (2015)

    Article  CAS  Google Scholar 

  35. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    Article  CAS  Google Scholar 

  36. J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford University Press, New York, 1973), p. 88

    Google Scholar 

  37. Y.B. Kamble, S.S. Chougule, B.K. Chougule, Characterization and property measurements of (y)Co0.9Cd0.1Fe2O4+ (1−y) PZT ME composites. J. Alloys Compd. 476(1–2), 733–738 (2009)

    Article  CAS  Google Scholar 

  38. A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Structure and electrical properties of Co0.5CdxFe2.5−xO4 ferrites. J. Alloys Compd. 464(1–2), 361–369 (2008)

    Article  CAS  Google Scholar 

  39. M. Atif, M. Idrees, M. Nadeem, M. Siddique, M.W. Ashraf, Investigation on the structural, dielectric and impedance analysis of manganese substituted cobalt ferrite ie, Co1−x MnxFe2O4(0.0≤ x ≤ 0.4). RSC Adv. 6(25), 20876–20885 (2016)

    Article  CAS  Google Scholar 

  40. P. Sivagurunathan, S.R. Gibin, Preparation and characterization of nickel ferrite nano particles by co-precipitation method with citrate as chelating agent. J. Mater. Sci.: Mater. Electron. 27(3), 2601–2607 (2016)

    CAS  Google Scholar 

  41. G.A. Ali, O.A. Fouad, S.A. Makhlouf, M.M. Yusoff, K.F. Chong, Co3O4/SiO2 nanocomposites for supercapacitor application. J. Solid State Electrochem. 18(9), 2505–2512 (2014)

    Article  CAS  Google Scholar 

  42. M.K. Zate, S.M.F. Shaikh, V.V. Jadhav, K.K. Tehare, S.S. Kolekar, R.S. Mane, M. Naushad, B.N. Pawar, K.N. Hui, Synthesis and electrochemical supercapacitive performance of nickel–manganese ferrite composite films. J. Anal. Appl. Pyrol. 116, 177–182 (2015)

    Article  CAS  Google Scholar 

  43. A.M. Zardkhoshoui, B. Ameri, S.S.H. Davarani, Fabrication of hollow MnFe2O4 nanocubes assembled by CoS2 nanosheets for hybrid supercapacitors. Chem. Eng. J. 435, 135170 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

List of authors has significantly contributed to the development and the writing of this article.

Corresponding authors

Correspondence to C. Rajeevgandhi or P. Sivagurunathan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. No additional information is available for this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeevgandhi, C., Sivagurunathan, P. Excellent performance of electrical and supercapacitor application of cadmium cobalt ferrite nanoparticles synthesized by chemical co-precipitation technique. J Mater Sci: Mater Electron 33, 16791–16804 (2022). https://doi.org/10.1007/s10854-022-08543-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08543-9

Navigation