Log in

Co3O4/SiO2 nanocomposites for supercapacitor application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, Co3O4/SiO2 nanocomposites have been successfully synthesized by citrate–gel method by utilizing SiO2 matrix for Co3O4 embedment. Spectroscopy analyses confirm the formation of high crystalline Co3O4 nanoparticles; meanwhile, microscopy findings reveal that the Co3O4 nanoparticles are embedded in SiO2 matrix. Electrochemical properties of the Co3O4/SiO2 nanocomposites were carried out using cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) in 5 M KOH electrolyte. The findings show that the charge storage of Co3O4/SiO2 nanocomposites is mainly due to the reversible redox reaction (pseudocapacitance). The highest specific capacitance of 1,143 F g1 could be achieved at a scan rate of 2.5 mV s−1 in the potential region between 0 and 0.6 V. Furthermore, high-capacitance retention (>92 %) after 900 continuous charge–discharge tests reveals the excellent stability of the nanocomposites. It is worth noting from the EIS measurements that the nanocomposites have low ESR value of 0.33 Ω. The results manifest that Co3O4/SiO2 nanocomposites are the promising electrode material for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Kluwer Academic/Plenum Press, New York

    Google Scholar 

  2. Martin W, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 104(10):4245–4269

    Article  Google Scholar 

  3. Patrice S, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Google Scholar 

  4. Kim M-H, Yang J-H, Kang Y-M, Park S-M, Han JT, Kim K-B, Roh KC (2014) Fluorinated activated carbon with superb kinetics for the supercapacitor application in nonaqueous electrolyte. Colloids Surf A 443:535–539

    Article  CAS  Google Scholar 

  5. Wei S, Kang WP, Davidson JL, Huang JH (2008) Supercapacitive behavior of CVD carbon nanotubes grown on Ti coated Si wafer. Diam Relat Mater 17(4–5):906–911

    Article  CAS  Google Scholar 

  6. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868

    Article  CAS  Google Scholar 

  7. Okajima K, Ikeda A, Kamoshita K, Sudoh M (2005) High rate performance of highly dispersed C60 on activated carbon capacitor. Electrochim Acta 51(5):972–977

    Article  CAS  Google Scholar 

  8. Lee M-T, Chang J-K, Hsieh Y-T, Tsai W-T, Lin C-K (2010) Manganese oxide thin films prepared by potentiodynamic electrodeposition and their supercapacitor performance. J Solid State Electrochem 14(9):1697–1703

    CAS  Google Scholar 

  9. Qu QT, Shi Y, Li LL, Guo WL, Wu YP, Zhang HP, Guan SY, Holze R (2009) V2O5 · 0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochem Commun 11(6):1325–1328

    Article  CAS  Google Scholar 

  10. Kulal PM, Dubal DP, Lokhande CD, Fulari VJ (2011) Chemical synthesis of Fe2O3 thin films for supercapacitor application. J Alloys Compd 509(5):2567–2571

    Article  CAS  Google Scholar 

  11. Nathan T, Aziz A, Noor AF, Prabaharan SRS (2007) Nanostructured NiO for electrochemical capacitors: synthesis and electrochemical properties. J Solid State Electrochem 12(7–8):1003–1009

    Google Scholar 

  12. Li Y, Chang S, Liu X, Huang J, Yin J, Wang G, Cao D (2012) Nanostructured CuO directly grown on copper foam and their supercapacitance performance. Electrochim Acta 85:393–398

    Article  CAS  Google Scholar 

  13. Yuan C, Yang L, Hou L, Li D, Shen L, Zhang F, Zhang X (2011) Synthesis and supercapacitance of flower-like Co(OH)2 hierarchical superstructures self-assembled by mesoporous nanobelts. J Solid State Electrochem 16(4):1519–1525

    Google Scholar 

  14. Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. J Phys Chem C 115(31):15646–15654

    Article  CAS  Google Scholar 

  15. Mi H, Zhang X, Yang S, Ye X, Luo J (2008) Polyaniline nanofibers as the electrode material for supercapacitors. Mater Chem Phys 112(1):127–131

    CAS  Google Scholar 

  16. Jureviciute I, Bruckenstein S (2003) Electrochemical activity of chemically deposited polypyrrole films. J Solid State Electrochem 7(9):554–560

    CAS  Google Scholar 

  17. Wang X, Sumboja A, Khoo E, Yan C, Lee PS (2012) Cryogel synthesis of hierarchical interconnected macro-/mesoporous Co3O4 with superb electrochemical energy storage. J Phys Chem C 116(7):4930–4935

    Article  CAS  Google Scholar 

  18. Cheng H, Lu ZG, Deng JQ, Chung CY, Zhang K, Li YY (2010) A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res 3(12):895–901

    Article  CAS  Google Scholar 

  19. Meher SK, Rao GR (2011) Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4. J Phys Chem C 115(51):25543–25556

    Article  CAS  Google Scholar 

  20. Li Y, Huang K, Yao Z, Liu S, Qing X (2011) Co3O4 thin film prepared by a chemical bath deposition for electrochemical capacitors. Electrochim Acta 56(5):2140–2144

    Article  CAS  Google Scholar 

  21. Vijayakumar S, Ponnalagi AK, Nagamuthu S, Muralidharan G (2013) Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors. Electrochim Acta 106:500–505

    Article  CAS  Google Scholar 

  22. **e L, Li K, Sun G, Hu Z, Lv C, Wang J, Zhang C (2012) Preparation and electrochemical performance of the layered cobalt oxide (Co3O4) as supercapacitor electrode material. J Solid State Electrochem 17(1):55–61

    Google Scholar 

  23. Liu Y, Zhao W, Zhang X (2008) Soft template synthesis of mesoporous Co3O4/RuO2 · xH2O composites for electrochemical capacitors. Electrochim Acta 53(8):3296–3304

    Article  CAS  Google Scholar 

  24. Huang M, Zhang Y, Li F, Zhang L, Wen Z, Liu Q (2014) Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors. J Power Sources 252:98–106

    Article  CAS  Google Scholar 

  25. Kim SH, Kim YIL, Park JH, Ko JM (2009) Cobalt–manganese oxide–carbon–nanofiber composite. Int J Electrochem Sci 4:1489–1496

    CAS  Google Scholar 

  26. **a H, Zhu D, Luo Z, Yu Y, Shi X, Yuan G, **e J (2013) Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors. Sci Rep 3:2978–2986

    Google Scholar 

  27. Leonard KC, Suyama WE, Anderson MA (2011) Improvement of electrochemical capacitor electrodes using SiO2 nanoparticles. Electrochim Acta 56(27):10137–10144

    Article  CAS  Google Scholar 

  28. Fouad OA, Ali GAM, El–Erian MAI, Makhlouf SA (2012) Humidity-sensing properties of cobalt oxide/silica nanocomposites prepared via sol–gel and related routes. Nano 7(5):1250038–1250049

    Article  Google Scholar 

  29. Patterson A (1939) The Scherrer formula for x–ray particle size determination. Phys Rev 56(10):978–982

    Article  CAS  Google Scholar 

  30. Fouad OA, Makhlouf SA, Ali GAM, El–Sayed AY (2011) Cobalt/silica nanocomposite via thermal calcination–reduction of gel precursors. Mater Chem Phys 128(1–2):70–76

    CAS  Google Scholar 

  31. Esposito S, Turco M, Ramis G, Bagnasco G, Pernice P, Pagliuca C, Bevilacqua M, Aronne A (2007) Cobalt–silicon mixed oxide nanocomposites by modified sol–gel method. J Solid State Chem 180(12):3341–3350

    Article  CAS  Google Scholar 

  32. Veerasubramani GK, Krishnamoorthy K, Radhakrishnan S, Kim N-J, Kim SJ (2014) Synthesis, characterization, and electrochemical properties of CoMoO4 nanostructures. Int J Hydrogen Energy 39(10):5186–5193

    Article  CAS  Google Scholar 

  33. Li L, Zhang YQ, Liu XY, Shi SJ, Zhao XY, Zhang H, Ge X, Cai GF, Gu CD, Wang XL, Tu JP (2014) One–dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim Acta 116:467–474

    Article  CAS  Google Scholar 

  34. Kuang M, Zhang W, Guo XL, Yu L, Zhang YX (2014) Template-free and large-scale synthesis of hierarchical dandelion-like NiCo2O4 microspheres for high–performance supercapacitors. Ceram Int. doi:10.1016/j.ceramint.2014.02.099

    Google Scholar 

  35. Wang L, Liu X, Wang X, Yang X, Lu L (2010) Preparation and electrochemical properties of mesoporous Co3O4 crater-like microspheres as supercapacitor electrode materials. Curr Appl Phys 10(6):1422–1426

    Article  Google Scholar 

Download references

Acknowledgments

KF Chong and co-workers would like to acknowledge the funding from the Ministry of Education Malaysia in the form of MTUN–COE grant RDU121212 and RDU121213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwok Feng Chong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, G.A.M., Fouad, O.A., Makhlouf, S.A. et al. Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem 18, 2505–2512 (2014). https://doi.org/10.1007/s10008-014-2510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2510-3

Keywords

Navigation