Log in

An accessible strategy for high-performance copper layer fabrication on polyphenylene oxide substrates via polydopamine functionalization and electroless deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A facile and effective approach to fabricate a high-performance copper layer on polyphenylene oxide (PPO) substrate via electroless deposition for applications in the high-frequency circuit board is introduced in this study. Initially, a polydopamine coating was successfully formed on the surface of the PPO substrate after a micro-chemical etching by the combination of KMnO4 and KOH. Due to the high hydrophilic and strong adhesion of dopamine, the silver ions were uniformly adsorbed on the PPO substrate as a catalyst of electroless copper plating. Consequently, a metal copper layer with high reliability and strong adhesion is formed, which is characterized by optical microscopy, SEM, EDS, and XRD. The resistance of the deposited copper layer was about 2.74 μΩ cm (only block 1.68 times the resistance of copper-shaped copper), and the adhesion of the copper layer also reached the 5B score in the ASTM D3559 standard after the 100-grid peel test. This technique offers a dependable method to prepare a high-performance copper layer on the PPO substrate which has a great potential to be applied in functional electronics, including industrial polymer circuits and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Yuan, J. Huang, Y. Dong et al., Record-high transparent electromagnetic interference shielding achieved by simultaneous microwave Fabry-Pérot interference and optical antireflection. ACS Appl. Mater. Interfaces 12(23), 26659–26669 (2020). https://doi.org/10.1021/acsami.0c05334

    Article  CAS  Google Scholar 

  2. W. Wei, E. Pallecchi, S. Haque et al., Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates. Nanoscale 8(29), 14097–14103 (2016). https://doi.org/10.1039/C6NR01521B

    Article  CAS  Google Scholar 

  3. Y. Chen, Y. Gao, X. ** et al., Effect of surface finishing on signal transmission loss of microstrip copper lines for high-speed PCB. J. Mater. Sci. 30(17), 16226–16233 (2019). https://doi.org/10.1007/s10854-019-01991-w

    Article  CAS  Google Scholar 

  4. J. Shi, X. Zhang, L. Weng et al., Study on low dielectric laminate modified by hyperbranched polyester of caprylic acid and hexanoic acid co-blocking. J. Mater. Sci. 31(7), 5068–5076 (2020). https://doi.org/10.1007/s10854-020-03052-z

    Article  CAS  Google Scholar 

  5. H. Dang, P. Jannasch, Alkali-stable and highly anion conducting poly(phenylene oxide)s carrying quaternary piperidinium cations. J. Mater. Chem. A 4(30), 11924–11938 (2016). https://doi.org/10.1039/C6TA01905F

    Article  CAS  Google Scholar 

  6. Q. Li, L. Liu, Q. Miao et al., A novel poly(2,6-dimethyl-1,4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes. Chem. Commun. 50(21), 2791 (2014). https://doi.org/10.1039/c3cc47897a

    Article  CAS  Google Scholar 

  7. N. Chen, D. Wang, C. Long et al., Magnetic field-oriented ferroferric oxide/poly(2,6-dimethyl-1,4-phenylene oxide) hybrid membranes for anion exchange membrane applications. Nanoscale 10(39), 18680–18689 (2018). https://doi.org/10.1039/C8NR06048G

    Article  CAS  Google Scholar 

  8. J. Ran, L. Wu, Y. Ru et al., Anion exchange membranes (AEMs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and its derivatives. Polym. Chem. 6(32), 5809–5826 (2015). https://doi.org/10.1039/C4PY01671H

    Article  CAS  Google Scholar 

  9. Y. Wang, Y. Tao, J. Zhou et al., Biobased anethole-functionalized poly(phenylene oxides): new low dielectric materials with high Tg and good dimensional stability. ACS Sustain. Chem. Eng. 6(7), 9277–9282 (2018). https://doi.org/10.1021/acssuschemeng.8b01596

    Article  CAS  Google Scholar 

  10. W. Zhang, C. Lu, M. Ge et al., Surface modified and gradation-mixed Al2O3 as an effective filler for the polyphenylene oxide (PPO) insulative layer in copper clad laminates. J. Mater. Sci. 31(23), 21602–21616 (2020). https://doi.org/10.1007/s10854-020-04673-0

    Article  CAS  Google Scholar 

  11. S. Ikari, H. Kashiwade, T. Matsuoka et al., Improvement of copper plating adhesion of PPE printed wiring board by plasma treatment. Surf. Coat. Technol. 202(22–23), 5583–5585 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.032

    Article  CAS  Google Scholar 

  12. L. Hou, H. Zhao, S.Y. Bi et al., Fabrication of adhesion-enhanced and highly reliable copper circuits onto flexible substrates via a scribing–seeding–plating process. J. Mater. Chem. C 5(25), 6281–6293 (2017). https://doi.org/10.1039/C7TC01353A

    Article  CAS  Google Scholar 

  13. K.C. Khulbe, T. Matsuura, Characterization of PPO membranes by oxygen plasma etching, gas separation and atomic force microscopy. J. Membr. Sci. 171(2), 273–284 (2000). https://doi.org/10.1016/S0376-7388(00)00311-2

    Article  CAS  Google Scholar 

  14. G.P. Maier, M.V. Rapp, J.H. Waite et al., Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 349(6248), 628–632 (2015). https://doi.org/10.1126/science.aab0556

    Article  CAS  Google Scholar 

  15. J. Yan, L. Yang, M.F. Lin et al., Polydopamine spheres as active templates for convenient synthesis of various nanostructures. Small 9(4), 596–603 (2013). https://doi.org/10.1002/smll.201201064

    Article  CAS  Google Scholar 

  16. Y. Qiang, C. Zhu, Y. Liu et al., Fabrication of highly conductive silver nanowires flexible conductor based on polydopamine-modified goose down network. J. Mater. Sci. 29(8), 6388–6396 (2018). https://doi.org/10.1007/s10854-018-8618-y

    Article  CAS  Google Scholar 

  17. B. Nan, K. Wu, Y. Liu et al., Nacre-inspired copper nanowires/graphene oxide films with excellent thermal conductivity, flame retardancy and electrical performance. J. Mater. Sci. 30(22), 19928–19939 (2019). https://doi.org/10.1007/s10854-019-02359-w

    Article  CAS  Google Scholar 

  18. H. Lee, S.M. Dellatore, W.M. Miller et al., Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007). https://doi.org/10.1126/science.1147241

    Article  CAS  Google Scholar 

  19. H. Lee, Y. Lee, A.R. Statz et al., Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv. Mater. 20(9), 1619–1623 (2008). https://doi.org/10.1002/adma.200702378

    Article  CAS  Google Scholar 

  20. S. Ma, L. Liu, V. Bromberg et al., Fabrication of highly electrically conducting fine patterns via substrate-independent inkjet printing of mussel-inspired organic nano-material. J. Mater. Chem. C 2(20), 3885–3889 (2014). https://doi.org/10.1039/C3TC32459A

    Article  CAS  Google Scholar 

  21. G. Mondin, F.M. Wisser, A. Leifert et al., Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles. J. Colloid Interf. Sci. 411, 187–193 (2013). https://doi.org/10.1016/j.jcis.2013.08.028

    Article  CAS  Google Scholar 

  22. C. Wu, X. Tang, L. Gan et al., High-adhesion stretchable electrode via cross-linking intensified electroless deposition on a biomimetic elastomeric micropore film. ACS Appl. Mater. Interfaces 11(22), 20535–20544 (2019). https://doi.org/10.1021/acsami.9b05135

    Article  CAS  Google Scholar 

  23. Y. Liao, B. Cao, W. Wang et al., A facile method for preparing highly conductive and reflective surface-silvered polyimide films. Appl. Surf. Sci. 255(19), 8207–8212 (2009). https://doi.org/10.1016/j.apsusc.2009.05.038

    Article  CAS  Google Scholar 

  24. B. Cheng, Y. Inoue, K. Ishihara, Conversion of functional group on PTFE surface by argon plasma pre-treatment and polydopamine coating. Mater. Sci. Eng 381, 12039 (2018). https://doi.org/10.1088/1757-899X/381/1/012039

    Article  Google Scholar 

  25. Y. Wang, C. Yan, S.Y. Cheng et al., Flexible RFID tag metal antenna on paper-based substrate by inkjet printing technology. Adv. Funct. Mater. 29(29), 1902579 (2019). https://doi.org/10.1002/adfm.201902579

    Article  CAS  Google Scholar 

  26. Y. Wang, Y. Huang, Y. Li et al., A facile process combined with roll-to-roll flexographic printing and electroless deposition to fabricate RFID tag antenna on paper substrates. Composites Part B 224, 109194 (2021). https://doi.org/10.1016/j.compositesb.2021.109194

    Article  CAS  Google Scholar 

  27. Y. Wang, Y. Wang, J. Chen et al., A facile process combined with inkjet printing, surface modification and electroless deposition to fabricate adhesion-enhanced copper patterns on flexible polymer substrates for functional flexible electronics. Electrochim. Acta 218, 24–31 (2016). https://doi.org/10.1016/j.electacta.2016.08.143

    Article  CAS  Google Scholar 

  28. Y. Wang, L. Ni, F. Yang et al., Facile preparation of a high-quality copper layer on epoxy resin via electroless plating for applications in electromagnetic interference shielding. J. Mater. Chem. C 5(48), 12769–12776 (2017). https://doi.org/10.1039/C7TC03823B

    Article  CAS  Google Scholar 

  29. P. Glass, H. Chung, N.R. Washburn et al., Enhanced wet adhesion and shear of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p(DMA-co-MEA) tip coating. Langmuir 26(22), 17357–17362 (2010). https://doi.org/10.1021/la1029245

    Article  CAS  Google Scholar 

  30. S. Hong, Y.S. Na, S. Choi et al., Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater. 22(22), 4711–4717 (2012). https://doi.org/10.1002/adfm.201201156

    Article  CAS  Google Scholar 

  31. J. Fu, Z. Chen, M. Wang et al., Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J. 259, 53–61 (2015). https://doi.org/10.1016/j.cej.2014.07.101

    Article  CAS  Google Scholar 

  32. M. Cui, S. Ren, H. Zhao et al., Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating. Chem. Eng. J. 335, 255–266 (2018). https://doi.org/10.1016/j.cej.2017.10.172

    Article  CAS  Google Scholar 

  33. S. Velmurugan, T.C.K. Yang, Fabrication of high-performance molybdenum disulfide–graphitic carbon nitride p–n heterojunction stabilized rGO/ITO photoelectrode for photoelectrochemical determination of dopamine. ACS Appl. Electron. Mater. 2(9), 2845–2856 (2020). https://doi.org/10.1021/acsaelm.0c00500

    Article  CAS  Google Scholar 

  34. S. **ong, Y. Wang, J. Yu et al., Polydopamine particles for next-generation multifunctional biocomposites. J. Mater. Chem. A 2(20), 7578–7587 (2014). https://doi.org/10.1039/C4TA00235K

    Article  CAS  Google Scholar 

  35. T. Chen, T. Liu, T. Su et al., Self-polymerization of dopamine in acidic environments without oxygen. Langmuir 33(23), 5863–5871 (2017). https://doi.org/10.1021/acs.langmuir.7b01127

    Article  CAS  Google Scholar 

  36. Q. Ye, F. Zhou, W. Liu, Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 40(7), 4244 (2011). https://doi.org/10.1039/c1cs15026j

    Article  CAS  Google Scholar 

  37. Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114(9), 5057–5115 (2014). https://doi.org/10.1021/cr400407a

    Article  CAS  Google Scholar 

  38. E. Norkus, A. Vaškelis, J. Jačiauskienė et al., Obtaining of high surface roughness copper deposits by electroless plating technique. Electrochim. Acta 51(17), 3495–3499 (2006). https://doi.org/10.1016/j.electacta.2005.09.043

    Article  CAS  Google Scholar 

  39. L. Yu, L. Guo, R. Preisser et al., Autocatalysis during electroless copper deposition using glyoxylic acid as reducing agent. J. Electrochem. Soc. 160(12), 3004–3008 (2013). https://doi.org/10.1149/2.002312jes

    Article  CAS  Google Scholar 

  40. R. Zeszut, U. Landau, Determination of redox currents in electroless systems: correct application of mixed potential analysis. J. Electrochem. Soc. 166(14), 737–741 (2019). https://doi.org/10.1149/2.0771914jes

    Article  CAS  Google Scholar 

  41. M. Yang, Z. Feng, M. Huang, et al. Printing assembly of flexible devices with oxidation stable MXene for high performance humidity sensing applications. Sens. Actuator B-Chem. 364, 131867 (2022). https://doi.org/10.1016/j.snb.2022.131867

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant NO. 51902040 and 52173236). This work was sponsored by the ‘Chenguang Program’ supported by the Shanghai Education Development Foundation and Shanghai Municipal Education Commission (Nos.18CGB09, 20CGB07).

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51902040 and 52173236). This work was sponsored by the ‘Chenguang Program’ supported by the Shanghai Education Development Foundation and Shanghai Municipal Education Commission (Nos. 18CGB09, 20CGB07).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by Hui-gen Liu and Kang Wang. The first draft of the manuscript was written by Kang Wang. Project administration, conceptualization, and formal analysis were performed by Zhe-sheng Feng and Yan Wang. Visualization, Investigation, and Methodology were performed by Yuan-ming Chen, Meng-yao Yang, and Ji-qing Lian. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhe-sheng Feng or Yan Wang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 21795 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Hg., Feng, Zs., Wang, K. et al. An accessible strategy for high-performance copper layer fabrication on polyphenylene oxide substrates via polydopamine functionalization and electroless deposition. J Mater Sci: Mater Electron 33, 13012–13022 (2022). https://doi.org/10.1007/s10854-022-08243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08243-4

Navigation