Log in

Nacre-inspired copper nanowires/graphene oxide films with excellent thermal conductivity, flame retardancy and electrical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Inspired by the hierarchical microstructure of nacre, via the surface modification of polydopamine (PDA), nacre-mimicking composite films containing graphene oxide (GO) and different mass ratio (5, 15, 25, 35 wt%) of copper nanowires (CuNWs) were prepared with a solvent-induced assembly strategy. The introduction of PDA not only reduced GO, but also protected the CuNWs from oxidation. 1D CuNWs, as a thermal bridge, was introduced into 2D GO nanosheets to construct an interconnected thermal conduction network. This structure can provide an effective thermal conductive pathway. The CuNWs/GO-PDA film containing 25 wt% CuNWs (25CuNWs/GO-PDA) exhibits excellent in-plane thermal conductivity of 6.841 W/mK and cross-plane thermal conductivity of 0.202 W/mK. A high anisotropy index of about 34 for 25CuNWs/GO-PDA film was obtained. Due to the char forming ability of PDA, and unique nanosheets structure of GO, films exhibit excellent flame retardancy. Micro combustion calorimeter tests confirm dramatically reduced 80.9% of peak heat release rate compared with pristine GO. More importantly, electrical conductivity of composites improved with the increase of CuNWs loading. With the addition of 35 wt% CuNWs, the electrical conductivity reaches 6.43 × 106 S/m. This type of bioinspired film with multifunctional properties is expected to be used as a promising candidate for electronic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Wang, L. Xu, Z. Yang, H. **e, P. Jiang, J. Dai, W. Luo, Y. Yao, E. Hitz, R. Yang, B. Yang, L. Hu, Nanoscale 10, 167–173 (2018)

    CAS  Google Scholar 

  2. P. Ming, Z.F. Song, S.S. Gong, Y.Y. Zhang, J.L. Duan, Q. Zhang, L. Jiang, Q.F. Cheng, J. Mater. Chem. A 42, 21194–21200 (2015)

    Google Scholar 

  3. S. Lv, L.Y. Ma, Q. Zhou, X.Y. Shen, H. Tong, J. Mater. Sci.-Mater. Electron. 30, 14382-14390 (2019)

    CAS  Google Scholar 

  4. J K Han, G L Du, W W Gao, H Bai, Adv. Funct. Mater. 29, 9 (2019)

    Google Scholar 

  5. T. Zhang, J.J. Sun, L.L. Ren, Y.M. Yao, M.M. Wang, X.L. Zeng, R. Sun, J.B. Xu, C.P. Wong, Compos. Part A 121, 92–99 (2019)

    CAS  Google Scholar 

  6. G. Mayer, Science 310, 1144–1147 (2005)

    CAS  Google Scholar 

  7. H.W. Zhao, Y.H. Yue, L. Guo, J.T. Wu, Y.W. Zhang, X.D. Li, S.C. Mao, X.D. Han, Adv. Mater. 28, 5099–5105 (2016)

    CAS  Google Scholar 

  8. A. Eckert, T. Rudolph, J.Q. Guo, T. Mang, A. Walther, Adv. Mater. 32, 8 (2018)

    Google Scholar 

  9. S.J. Wan, J.S. Peng, Y.C. Li, H. Hu, L. Jiang, Q.F. Cheng, ACS Nano 9, 9830–9836 (2015)

    CAS  Google Scholar 

  10. C.M. Chen, Q.H. Yang, Y.G. Yang, W. Lv, Y.F. Wen, P.X. Hou, M.Z. Wang, H.M. Cheng, Adv. Mater. 21, 3007–3011 (2009)

    CAS  Google Scholar 

  11. L.L. Tian, P. Anilkumar, L. Cao, C.Y. Kong, M.J. Meziani, H.J. Qian, L.M. Veca, T.J. Thorne, K.N. Tackett, T. Edwards, Y.P. Sun, ACS Nano 5, 3052–3058 (2011)

    CAS  Google Scholar 

  12. Y.Z. Feng, X.W. Li, X.Y. Zhao, Y.S. Ye, X.P. Zhou, H. Liu, C.T. Liu, X.L. **e, A.C.S. Appl, Mater. Interfaces 10, 21628–21641 (2018)

    CAS  Google Scholar 

  13. T. Chen, L.W. Deng, J. Mater. Sci. 30, 9775–9784 (2019)

    CAS  Google Scholar 

  14. Z. Zhang, W.Z. Li, X. Wang, W.M. Liu, K.M. Chen, W.J. Gan, J. Mater. Sci. 30, 7384–7392 (2019)

    CAS  Google Scholar 

  15. Y.J. **ng, X.H. Zhang, H.Y. Chen, M.J. Chen, Q.W. Li, Carbon 61, 501–506 (2013)

    CAS  Google Scholar 

  16. A. Rai, A.L. Moore, Compos. Sci. Technol. 144, 70–78 (2017)

    CAS  Google Scholar 

  17. L.Y. Zhang, J.S. Yin, W. Yu, M.Z. Wang, H.Q. **e, Nanoscale Res. Lett. 12, 6 (2017)

    Google Scholar 

  18. K. Ahn, K. Kim, J Kim Polymer 76, 313–320 (2015)

    CAS  Google Scholar 

  19. K. Kim, K. Ahn, H. Ju, J. Kim, Ind. Eng. Chem. Res. 55, 2713–2720 (2016)

    CAS  Google Scholar 

  20. H. Yuan, Y. Wang, T. Li, P.M. Ma, S.W. Zhang, M.L. Du, M.Q. Chen, W.F. Dong, W.H. Ming, Compos. Sci. Technol. 164, 153–159 (2018)

    CAS  Google Scholar 

  21. H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318, 426–430 (2007)

    CAS  Google Scholar 

  22. H. Shen, J. Guo, H. Wang, N. Zhao, J. Xu, A.C.S. Appl, Mater. Interfaces 7, 5701–5708 (2015)

    CAS  Google Scholar 

  23. Y. Liu, K. Wu, F. Luo, M. Lu, F. **ao, X. Du, S. Zhang, L. Liang, M. Lu, Compos. Pt. A-Appl. Sci. Manuf. 117, 134-143 (2019)

    CAS  Google Scholar 

  24. M.N. Li, C. Tang, L. Zhang, B.R. Shang, S.R. Zheng, S.H. Qi, J. Mater. Sci. 29, 4948–4954 (2018)

    CAS  Google Scholar 

  25. W. Cui, M. Li, J. Liu, B. Wang, C. Zhang, L. Jiang, Q. Cheng, ACS Nano 8, 9511–9517 (2014)

    CAS  Google Scholar 

  26. N. Ning, Q. Ma, S. Liu, M. Tian, L. Zhang, T. Nishi, A.C.S. Appl, Mater. Interfaces 7, 10755–10762 (2015)

    CAS  Google Scholar 

  27. F.B. Luo, K. Wu, J. Shi, X.X. Du, X.Y. Li, L. Yang, M.G. Lu, J. Mater. Chem. A 5, 18542–18550 (2017)

    CAS  Google Scholar 

  28. J.H. Cho, V. Vasagar, K. Shanmuganathan, A.R. Jones, S. Nazarenko, C.J. Ellison, Chem. Mater. 27, 6784–6790 (2015)

    CAS  Google Scholar 

  29. B.C. Roberts, A.R. Jones, O.A. Ezekoye, C.J. Ellison, M.E. Webber, Combust. Flame 177, 184-192 (2017)

    CAS  Google Scholar 

  30. H. Kim, D.W. Kim, V. Vasagar, H. Ha, S. Nazarenko, C.J. Ellison, Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201803172

    Article  Google Scholar 

  31. Y. Chang, M.L. Lye, H.C. Zeng, Langmuir 21, 3746–3748 (2005)

    CAS  Google Scholar 

  32. S.R. Ye, I.E. Stewart, Z.F. Chen, B. Li, A.R. Rathmell, B.J. Wiley, Acc. Chem. Res. 49, 442–451 (2016)

    CAS  Google Scholar 

  33. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 448, 457–460 (2007)

    CAS  Google Scholar 

  34. B. Shen, W.T. Zhai, W.G. Zheng, Adv. Funct. Mater. 24, 4542–4548 (2014)

    CAS  Google Scholar 

  35. X.M. Feng, X. Wang, W.Y. **ng, B. Yu, L. Song, Y. Hu, Ind. Eng. Chem. Res. 52, 12906–12914 (2013)

    CAS  Google Scholar 

  36. Y.X. Zhang, S. Chen, J.X. An, H. Fu, X.S. Wu, C.C. Pang, H. Gao, A.C.S. Biomater, Sci. Eng. 5, 2732–2739 (2019)

    CAS  Google Scholar 

  37. L.L. Ju, G.S. Wu, B. Lu, X.Y. Li, H.P. Wu, A.P. Liu, Electroanalysis 28, 2543–2551 (2016)

    CAS  Google Scholar 

  38. H. Oh, K. Kim, S. Ryu, J. Kim, Compos. Part A 116, 206–215 (2019)

    CAS  Google Scholar 

  39. Y.M. Yao, X.L. Zeng, F.F. Wang, R. Sun, J.B. Xu, C.P. Wong, Chem. Mater. 28, 1049–1057 (2016)

    CAS  Google Scholar 

  40. N. Song, S.Q. Cui, X.S. Hou, P. Ding, L.Y. Shi, A.C.S. Appl, Mater. Interfaces. 9, 40766–40773 (2017)

    CAS  Google Scholar 

  41. Y. Li, X.J. Tian, W. Yang, Q. Li, L.Q. Hou, Z.X. Zhu, Y.S. Tang, M.J. Wang, B. Zhang, T. Pan, Y.F. Li, Chem. Eng. J. 358, 718–724 (2019)

    CAS  Google Scholar 

  42. Y.Y. Dong, Z. Gui, S.H. Jiang, Y. Hu, K.Q. Zhou, Ind. Eng. Chem. Res. 50, 10903–10909 (2011)

    CAS  Google Scholar 

  43. K.Y. Ju, Y. Lee, S. Lee, S.B. Park, J.K. Lee, Biomacromol 12, 625–632 (2011)

    CAS  Google Scholar 

  44. S.F. Pei, J.P. Zhao, J.H. Du, W.C. Ren, H.M. Cheng, Carbon 48, 4466–4474 (2010)

    CAS  Google Scholar 

  45. W. Huang, J. Li, S. Zhao, F. Han, G. Zhang, R. Sun, C.-P. Wong, Compos. Sci. Technol. 146, 169–176 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely acknowledge the financial support from the National Key R&D Program of China (2017YFD0601003) and Guangzhou Science and Technology Plan Project (201804010174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 14664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, B., Wu, K., Liu, Y. et al. Nacre-inspired copper nanowires/graphene oxide films with excellent thermal conductivity, flame retardancy and electrical performance. J Mater Sci: Mater Electron 30, 19928–19939 (2019). https://doi.org/10.1007/s10854-019-02359-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02359-w

Navigation