Log in

Three-dimensional Cu–Co–Se–P nanocomposites as flexible supercapacitor electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 07 March 2022

This article has been updated

Abstract

Supercapacitor electrodes have received much attention for energy storage devices, but they often suffer from unsatisfying rate properties and limited intrinsic conductivity. Herein, core–shell Cu–Co–Se–P arrays were developed via hydrothermal strategy, followed by selenisation and phosphorisation. Owing to the core–shell arrays with porous structures, Cu–Co–Se–P electrodes showed an exceptional specific capacity of approximately 12 F cm−2 at 5 mA cm−2 and good cycle stability (81.2% after 10,000 cycles). In addition, the supercapacitor device based on Cu–Co–Se–P electrodes exhibited good flexible properties. The results offer a new method to develop mixed phosphides and selenides for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Article has no associated data or the date will not be deposited.

Change history

References

  1. S. Kumar, G. Saeed, L. Zhu, K.N. Hui, J.H. Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352 (2021)

    Article  CAS  Google Scholar 

  2. J. Yan, W. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 3, 1900853 (2020)

    Article  Google Scholar 

  3. T. Yi, H. Sari, X. Li, F. Wang, Y. Zhu, J. Hu, J. Zhang, X. Li, A review of niobium oxides based nanocomposites for lithium-ion batteries sodium-ion batteries and supercapacitors. Nano Energy 85, 105955 (2021)

    Article  CAS  Google Scholar 

  4. T. Yi, Li, J. Qiu, S. Mei, P. Qi, S. Cui, Y. Luo, Y. Zhu, Y. **e, Y. He, Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci. Bull. 65, 546–556 (2020)

    Article  CAS  Google Scholar 

  5. Y. Zhang, Y. Hu, Z. Wang, T. Lin, X. Zhu, B. Luo, H. Hu, W. **ng, Z. Yan, L. Wang, Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor. Adv. Funct. Mater. 39, 2004172 (2020)

    Article  Google Scholar 

  6. Y. Liu, X. Xu, Z. Shao, S.P. Jiang, Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. Energy Storage Mater. 26, 1–22 (2020)

    Article  Google Scholar 

  7. Q. Zong, Y. Zhu, Q. Wang, H. Yang, Q. Zhang, J. Zhan, W. Du, Prussian blue analogues anchored P-(Ni, Co)Se2 nanoarrays for high performance all-solid-state supercapacitor. Chem. Eng. J. 392, 123664 (2020)

    Article  CAS  Google Scholar 

  8. L. Cheng, S. Chen, Q. Zhang, Y. Li, J. Chen, Y. Lou, Hierarchical sea-urchin-like bimetallic zinc–cobalt selenide for enhanced battery-supercapacitor hybrid device. J. Energy Storage 31, 101663 (2020)

    Article  Google Scholar 

  9. S. Li, Y. Ruan, Q. **e, Morphological modulation of NiCo2Se4 nanotubes through hydrothermal selenization for asymmetric supercapacitor. Electrochim. Acta 356, 136837 (2020)

    Article  CAS  Google Scholar 

  10. F. Zhu, W. Liu, Y. Liu, W. Shi, Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications. Chem. Eng. J. 383, 123150 (2020)

    Article  CAS  Google Scholar 

  11. S. Yousefi, A. Sobhani, H. Alshamsi, M.S. Niasari, Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a cap** agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. 11, 11500 (2021)

    Article  CAS  Google Scholar 

  12. S. Yousefi, O. Amiri, M.S. Niasari, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem 58, 104619 (2019)

    Article  CAS  Google Scholar 

  13. C. Chen, L. Liu, Y. Li, W. Li, L. Zhou, Y. Lan, Y. Li, Insight into heterogeneous catalytic degradation of sulfamethazine by peroxymonosulfate activated with CuCo2O4 derived from bimetallic oxalate. Chem. Eng. J. 384, 123257 (2020)

    Article  CAS  Google Scholar 

  14. K.S. Lee, I. Phiri, C.W. Park, S. Kim, J.M. Ko, Nature inspired approach to mimic design for increased specific capacitance as supercapacitor electrodes. J. Colloid Interf. Sci. 592, 42–50 (2021)

    Article  CAS  Google Scholar 

  15. Z. Wang, W. Qian, Y. Ran, P. Hong, X. **ao, Y. Wang, Nanosheets based mixed structure CuCo2O4 hydrothermally grown on Ni foam applied as binder-free supercapacitor electrodes. J. Energy Storage 32, 101865 (2020)

    Article  Google Scholar 

  16. S.G. Mohamed, I. Hussain, M.S. Sayed, J. Shim, One-step development of octahedron-like CuCo2O4@Carbon fibers for high-performance supercapacitors electrodes. J. Alloys Compd. 842, 155639 (2020)

    Article  CAS  Google Scholar 

  17. T. Yi, L. Shi, X. Han, F. Wang, Y. Zhu, Y. **e, Approaching high-performance lithium storage materials by constructing hierarchical CoNiO2@CeO2 nanosheets. Energy Environ. Mater 4, 586–595 (2021)

    Article  CAS  Google Scholar 

  18. T. Yi, Y. Li, Z. Fang, P. Cui, S. Luo, Y. **e, Improving the cycling stability and rate capability of LiMn0.5Fe0.5PO4/C nanorod as cathode materials by LiAlO2 modification. J. Materiomics 6, 33–44 (2020)

    Article  Google Scholar 

  19. S. Deshagani, P. Ghosal, M. Deepa, Altered crystal structure of nickel telluride by selenide do** and a poly(N-methylpyrrole) coating amplify supercapacitor performance. Electrochim. Acta 345, 136200 (2020)

    Article  CAS  Google Scholar 

  20. H.M.E. Sharkawy, D.M. Sayed, A.S. Dhmees, R.M. Aboushahba, N.K. Allam, Facile synthesis of nanostructured binary Ni-Cu phosphides as advanced battery materials for asymmetric electrochemical supercapacitors. ACS Appl. Energy Mater. 3, 9305–9314 (2020)

    Article  Google Scholar 

  21. Y. Zhu, P. Lu, F. Li, Y. Ding, Y. Chen, Metal-rich porous copper cobalt phosphide nanoplates as a high-rate and stable battery-type cathode material for battery-supercapacitor hybrid devices. ACS Appl. Energy Mater. 4(4), 3962–3974 (2021)

    Article  CAS  Google Scholar 

  22. C. **ong, M. Li, S. Nie, W. Dang, W. Zhao, L. Dai, Y. Ni, Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free Wood@Polyaniline supercapacitor material for renewable energy storage application. J. Power Sour. 471, 228448 (2020)

    Article  CAS  Google Scholar 

  23. S. Yousefi, M.M. Arani, M. Morassaei, M.S. Niasari, H. Moayedi, Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int J Hydrogen Energy 44, 24005–24016 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank their friends for hel** and the reviewers for their insightful opinions and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

PZ: conceptualization, methodology, software, data curation, writing-original draft. ZY: investigation, supervision, validation, writing-review and editing.

Corresponding author

Correspondence to Zhihui Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Yang, Z. Three-dimensional Cu–Co–Se–P nanocomposites as flexible supercapacitor electrodes. J Mater Sci: Mater Electron 33, 7396–7402 (2022). https://doi.org/10.1007/s10854-022-07853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07853-2

Navigation