Log in

Synthesis of cobalt phosphate nanoflakes for high-performance flexible symmetric supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, leaf-like Co3(PO4)2 was synthesized via a simple and low-cost approach without adding any additional surfactant. Such leaf-like Co3(PO4)2 showed the high crystallinity as proved by spectra analysis. The electrochemical performance of as-synthesized Co3(PO4)2 was firstly characterized in a three-electrode system, which shows the specific capacitance of 410 F g− 1 at the current density of 1.0 A g− 1. Furthermore, flexible symmetric supercapacitor was fabricated with PVA-KOH gel electrolyte, exhibiting the specific capacitance of 165 F g− 1 at a current density of 0.5 A g− 1 with a high energy density of 52.8 Wh kg− 1 at a power density of 756 W kg− 1. This superior performance is attributed to the unique morphology and fast surface redox reaction. These excellent results suggested that Co3(PO4)2 nanoflakes are promising materials for potential application in high-performance flexible energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Huang, M. Zhong, Y. Huang, M. Zhu, Z. Pei, Z. Wang, Q. Xue, X. **e, C. Zhi, A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6, 10310 (2015)

    Article  CAS  Google Scholar 

  2. X. Li, X. **ao, Q. Li, J. Wei, H. Xue, H. Pang, Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorg. Chem. Front. 5, 11–28 (2018)

    Article  CAS  Google Scholar 

  3. F. Ma, L. Yu, C. Xu, X. Lou, Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ. Sci 9, 862–866 (2016)

    Article  CAS  Google Scholar 

  4. Z. Yang, J. Deng, X. Chen, J. Ren, H. Peng, A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. 52, 13453–13457 (2013)

    Article  CAS  Google Scholar 

  5. K.V. Sankar, S.C. Lee, Y. Seo, C. Ray, S. Liu, A. Kundu, S.C. Jun, Binder-free cobalt phosphate one-dimensional nanograsses as ultrahigh-performance cathode material for hybrid supercapacitor applications. J. Power Sources 373, 211–219 (2018)

    Article  CAS  Google Scholar 

  6. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  7. M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016)

    Article  Google Scholar 

  8. N. Padmanathan, H. Shao, K.M. Razeeb, Multifunctional nNickel phosphate nano/microflakes 3D electrode for electrochemical energy storage, nonenzymatic glucose, and sweat pH sensors. ACS Appl. Mater. Interfaces 10, 8599–8610 (2018)

    Article  CAS  Google Scholar 

  9. N. Padmanathan, H. Shao, D. McNulty, C. O’Dwyer, K.M. Razeeb, Hierarchical NiO–In2O3 microflower (3D)/nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability. J. Mater. Chem. A 4, 4820–4830 (2016)

    Article  CAS  Google Scholar 

  10. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)

    Article  CAS  Google Scholar 

  11. J. Vatamanu, D. Bedrov, Capacitive energy storage: current and future challenges. J. Phys. Chem. Lett. 6, 3594–3609 (2015)

    Article  CAS  Google Scholar 

  12. Y. Wang, Y. Song, Y. **a, Electrochemical capacitors:mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016)

    Article  CAS  Google Scholar 

  13. R. Tamilselvi, N. Padmanathan, M. Rahulan, K. Mohana Priya, P. Sasikumar, R. Mandhakini, M, Reduced graphene oxide (rGO): supported NiO, Co3O4 and NiCo2O4 hybrid composite on carbon cloth (CC)—bi-functional electrode/catalyst for energy storage and conversion devices. J. Mater. Sci. 29, 4869–4880 (2017)

    Google Scholar 

  14. X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011)

    Article  CAS  Google Scholar 

  15. L. Shen, L. Yu, H.B. Wu, X.Y. Yu, X. Zhang, X.W. Lou, Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 6694 (2015)

    Article  CAS  Google Scholar 

  16. Y. Chen, W.K. Pang, H. Bai, T. Zhou, Y. Liu, S. Li, Z. Guo, Enhanced structural stability of nickel-cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett. 17, 429–436 (2017)

    Article  CAS  Google Scholar 

  17. X. Yi, B. Dong, Y. Dong, N. Mao, L. Ding, L. Shi, R. Gao, W. Liu, G. Su, L. Cao, Well-defined, nanostructured, amorphous metal phosphate as electrochemical pseudocapacitor materials with high capacitance. Chem. Mater. 28, 1355–1362 (2016)

    Article  Google Scholar 

  18. M.C. Liu, J.J. Li, Y.X. Hu, Q.Q. Yang, L. Kang, Design and fabrication of Ni3P2O8-Co3P2O8·8H2O as advanced positive electrodes for asymmetric supercapacitors. Electrochim. Acta 201, 142–150 (2016)

    Article  CAS  Google Scholar 

  19. A.A. Mirghni, M.J. Madito, T.M. Masikhwa, K.O. Oyedotun, A. Bello, N. Manyala, Hydrothermal synthesis of manganese phosphate/graphene foam composite for electrochemical supercapacitor applications. J. Colloid Interface Sci. 494, 325–337 (2017)

    Article  CAS  Google Scholar 

  20. J.J. Li, M.C. Liu, L.B. Kong, M. Shi, W. Han, L. Kang, Facile synthesis of Co3P2O8·8H2O for high-performance electrochemical energy storage. Mater. Lett. 161, 404–407 (2015)

    Article  CAS  Google Scholar 

  21. H. Pang, Z. Yan, W. Wang, J. Chen, J. Zhang, H. Zheng, Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor. Nanoscale 4, 5946–5953 (2012)

    Article  CAS  Google Scholar 

  22. H. Pang, S. Wang, W. Shao, S. Zhao, B. Yan, X. Li, S. Li, J. Chen, W. Du, Few-layered CoHPO4·3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors. Nanoscale 5, 5752–5757 (2013)

    Article  CAS  Google Scholar 

  23. H. Li, H. Yu, J. Zhai, L. Sun, H. Yang, S. **e, Self-assembled 3D cobalt phosphate octahydrate architecture for supercapacitor electrodes. Mater. Lett. 152, 25–28 (2015)

    Article  Google Scholar 

  24. Y. Tang, Z. Liu, W. Guo, T. Chen, Y. Qiao, S. Mu, Y. Zhao, F. Gao, Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochim. Acta 190, 118–125 (2016)

    Article  CAS  Google Scholar 

  25. H. Pang, Y. Liu, J. Li, Y. Ma, G. Li, Y. Ai, J. Chen, J. Zhang, H. Zheng, Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials. Nanoscale 5, 503–507 (2013)

    Article  CAS  Google Scholar 

  26. M. Pramanik, R.R. Salunkhe, M. Imura, Y. Yamauchi, Phosphonate-derived nanoporous metal phosphates and their superior energy storage application. ACS Appl. Mater. Interfaces 8, 9790–9797 (2016)

    Article  CAS  Google Scholar 

  27. J.H. Yang, J. Tan, D. Ma, Nickel phosphate molecular sieve as electrochemical capacitors material. J. Power Sources 260, 169–173 (2014)

    Article  CAS  Google Scholar 

  28. J. Zhao, H. Pang, J. Deng, Y. Ma, B. Yan, X. Li, S. Li, J. Chen, W. Wang, Mesoporous uniform ammonium nickel phosphate hydrate nanostructures as high performance electrode materials for supercapacitors. CrystEngComm 15, 5950 (2013)

    Article  CAS  Google Scholar 

  29. S. Liu, Y. Zeng, M. Zhang, S. **e, Y. Tong, F. Cheng, X. Lu, Binder-free WS2 nanosheets with enhanced crystallinity as a stable negative electrode for flexible asymmetric supercapacitors. J. Mater. Chem. A 5, 21460–21466 (2017)

    Article  CAS  Google Scholar 

  30. F. Yang, Y. Chen, G. Cheng, S. Chen, W. Luo, Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal 7, 3824–3831 (2017)

    Article  CAS  Google Scholar 

  31. J. Li, G. Wei, Y. Zhu, Y. **, X. Pan, Y. Ji, I.V. Zatovsky, W. Han, Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 5, 14828–14837 (2017)

    Article  CAS  Google Scholar 

  32. X. Liang, B. Zheng, L. Chen, J. Zhang, Z. Zhuang, B. Chen, MOF-derived formation of Ni2P-CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting. ACS Appl. Mater. Interfaces 9, 23222–23229 (2017)

    Article  CAS  Google Scholar 

  33. D. Zhang, X. Kong, Y. Zhao, M. Jiang, X. Lei, CoOOH ultrathin nanoflake arrays aligned on nickel foam: fabrication and use in high-performance supercapacitor devices. J. Mater. Chem. A 4, 12833–12840 (2016)

    Article  CAS  Google Scholar 

  34. J. Zhu, Y. Shan, T. Wang, H. Sun, Z. Zhao, L. Mei, Z. Fan, Z. Xu, I. Shakir, Y. Huang, B. Lu, X. Duan, A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nat. Commun. 7, 13432 (2016)

    Article  Google Scholar 

  35. Y. Qian, M. Yang, F. Zhang, J. Du, K. Li, X. Lin, X. Zhu, Y. Lu, W. Wang, D.J. Kang, A stable and highly efficient visible-light-driven hydrogen evolution porous CdS/WO3/TiO2 photocatalysts. Mater. Charact. 142, 43–49 (2018)

    Article  CAS  Google Scholar 

  36. Y. An, Y. Yang, Z. Hu, B. Guo, X. Wang, X. Yang, Q. Zhang, H. Wu, High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate. J. Power Sources 337, 45–53 (2017)

    Article  CAS  Google Scholar 

  37. Y. Zhang, M. Zheng, M. Qu, M. Sun, H. Pang, Core–shell Co11(HPO3)8(OH)6-Co3O4 hybrids for high-performance flexible all-solid-state asymmetric supercapacitors. J. Alloys Compd. 651, 214–221 (2015)

    Article  CAS  Google Scholar 

  38. K. Raju, K.I. Ozoemena, Hierarchical one-dimensional ammonium nickel phosphate microrods for high-performance pseudocapacitors. Sci. Rep. 5, 17629 (2015)

    Article  CAS  Google Scholar 

  39. H. Shao, N. Padmanathan, D. McNulty, K.M. Razeeb, Supercapattery based on binder-free Co3(PO4)2·8H2O multilayer nano/microflakes on nickel foam. ACS Appl. Mater. Interfaces 8, 28592–28598 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Zhejiang Provincial Natural Science Foundation of China (LQ15E080007). H. Mao thanks the support from **hua Science and Technology Bureau (2018-4-105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Mao or Zhunian **.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 192 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, H., Zhang, F., Liu, X. et al. Synthesis of cobalt phosphate nanoflakes for high-performance flexible symmetric supercapacitors. J Mater Sci: Mater Electron 29, 16721–16729 (2018). https://doi.org/10.1007/s10854-018-9765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9765-x

Navigation