Log in

Novel (MnO2/Al) thermite colloid: an opportunity for energetic systems with enhanced performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current study highlights a sustainable fabrication of nanoscopic thermite (MnO2/Al) system, composed of MnO2 nanoparticles with an average particle size of about 20.8 nm prepared by a hydrothermal processing technique. In addition, it contains aluminium particles having a combustion heat of 32,000 J/g, which is very attractive for advanced energetic systems. Plate-like aluminium nanoparticles with an average particle size of 100 nm were developed by wet milling. Our results revealed aluminium optimum solid loading in tri-nitrotoulene (TNT), which was found to be 8.0 wt%. At this optimum solid loading level, aluminium nanoparticles increased the destructive effect of TNT by 25.0%. While, stoichiometric colloidal mixture of both MnO2 and Al nanoparticles exhibited a 65.0% increase in the destructive effect of TNT. Our work presents an intimate mixing between nano-thermite particles, where particle size and inter-particles’ distance are at the nanoscale. To sum up, TNT detonation wave was supported with one of the most potent thermite reactions occurring with maximum rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Ritter, S. Braun, High explosives containing ultrafine aluminum ALEX. Propellants Explos. Pyrotech. 26(6), 311–314 (2001)

    CAS  Google Scholar 

  2. N.H. Yen, L.Y. Wang, Reactive metals in explosives. Propellants Explos. Pyrotech. 37(2), 143–155 (2012)

    CAS  Google Scholar 

  3. R.C. Doty et al., Extremely stable water-soluble Ag nanoparticles. Chem. Mater. 17(18), 4630–4635 (2005)

    CAS  Google Scholar 

  4. V.E. Zarko, A.A. Gromov, Energetic Nanomaterials Synthesis, Characterization, and Application (Elsevier, Amsterdam, 2016)

    Google Scholar 

  5. P.P. Vadhe et al., Cast aluminized explosives (review). Combust Explos Shock Waves 44(4), 461–477 (2008)

    Google Scholar 

  6. J. Conkling, C. Mocella, Chemistry of Pyrotechnics Basic Principles and Theory, Second. (CRC, London, 2012)

    Google Scholar 

  7. M.L. Chan et al., Castable thermobaric explosive formulations. 2005, The United State of America Repredented by The Secretary of The Navy: United States. p. 5

  8. W.A. Trzciński, L. Maiz, Thermobaric and enhanced blast explosives—properties and testing methods. Propellants Explos. Pyrotech. 40, 632 (2015)

    Google Scholar 

  9. L. Shen et al., Preparation and characterization of Al/B/Fe2O3 nanothermites. Sci. China Chem. 57(6), 797–802 (2014)

    CAS  Google Scholar 

  10. S. Elbasuney, Novel colloidal nanothermite particles (MnO2/Al) for advanced highly energetic systems. J. Inorg. Organomet. Polym. Mater. 28(5), 1793–1800 (2018)

    CAS  Google Scholar 

  11. B.Q. Lin et al., Experimental investigation on explosion characteristics of nano-aluminum powder—air mixtures. Combust. Explos. Shock Waves 46(6), 678–682 (2010)

    Google Scholar 

  12. P. Brousseau, C.J. Anderson, Nanometric aluminum in explosives. Propellants Explos. Pyrotech. 27(5), 300–306 (2002)

    CAS  Google Scholar 

  13. E.L. Dreizin, Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35(2), 141–167 (2009)

    CAS  Google Scholar 

  14. H.J. Krier, J.M. Peuker, N. Glumac, Aluminum combustion in aluminized explosives: aerobic and anaerobic reaction, in 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition Orlando, Florida (2011)

  15. A.K. Mohamed, H.E. Mostafa, S. Elbasuney, Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation. J. Hazard. Mater. 301, 492–503 (2016)

    CAS  Google Scholar 

  16. S. Elbasuney et al., Colloid thermite nanostructure: a novel high energy density material for enhanced explosive performance. J. Inorg. Organometall. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01687-3

    Article  Google Scholar 

  17. J. Shin et al., Numerical modeling of close-in detonations of high explosives. Eng. Struct. 81(0), 88–97 (2014)

    Google Scholar 

  18. V.W. Manner et al., The role of aluminum in the detonation and post-detonation expansion of selected cast HMX-based explosives. Propellants Explos. Pyrotech. 37(2), 198–206 (2012)

    CAS  Google Scholar 

  19. X.L. **ng et al., Discussions on thermobaric explosives (TBXs). Propellants Explos. Pyrotech. 39(1), 14–17 (2014)

    CAS  Google Scholar 

  20. K.L. McNesby et al., Afterburn ignition delay and shock augmentation in fuel rich solid explosives. Propellants Explos. Pyrotech. 35(1), 57–65 (2010)

    CAS  Google Scholar 

  21. M.B. Talawar et al., Emerging trends in advanced high energy materials. Combust. Explos. Shock Waves 43(1), 62–72 (2007)

    Google Scholar 

  22. J.P. Agrawal, Status of Explosives. High Energy Materials (Wiley, New York, 2010), pp. 69–161

    Google Scholar 

  23. R. Meyer, J. Kohler, A. Homburg, Explosives, 6th edn. (Wiley, Weinheim, 2007)

    Google Scholar 

  24. M. Suceska, Test methods for explosives (Springer, New York, 1995)

    Google Scholar 

  25. M.M. West, D. Zavitsanos, Composite High Explosives for High Energy Blast Applications (General Electric Co., Philadelphia, 1982), p. 8

    Google Scholar 

  26. F. Maggi et al., Activated aluminum powders for space propulsion. Powder Technol 270, 46–52 (2015)

    CAS  Google Scholar 

  27. G. Jian et al., Nanothermite reactions: is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust. Flame 160(2), 432–437 (2013)

    CAS  Google Scholar 

  28. D. Moradkhani, M. Malekzadeh, E. Ahmadi, Nanostructured MnO2 synthesized via methane gas reduction of manganese ore and hydrothermal precipitation methods. Trans Nonferrous Met Soc China 23(1), 134–139 (2013)

    CAS  Google Scholar 

  29. L. Kang et al., Urea-assisted hydrothermal synthesis of manganese dioxides with various morphologies for hybrid supercapacitors. J. Alloys Compd. 648, 190–194 (2015)

    CAS  Google Scholar 

  30. S. Elbasuney, Enhanced flame retardant polymer nanocomposites, in school of chemical and environmental engineering 2013, Nottingham: Nottingham. p. 280

  31. S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268(0), 158–164 (2014)

    CAS  Google Scholar 

  32. S. Elbasuney, Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015)

    CAS  Google Scholar 

  33. S. Elbasuney, Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent. Particuology 22, 66–71 (2015)

    CAS  Google Scholar 

  34. S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)

    CAS  Google Scholar 

  35. S. Elbasuney, Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technol. 305, 538–545 (2017)

    CAS  Google Scholar 

  36. K. Byrappa, S. Ohara, T. Adschiri, Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv. Drug Deliv. Rev. 60(3), 299–327 (2008)

    CAS  Google Scholar 

  37. S. Elbasuney, S.F. Mostafa, Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher. Powder Technol. 278, 72–83 (2015)

    CAS  Google Scholar 

  38. K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology (William Andrew, Norwich, 2001)

    Google Scholar 

  39. J. Li, Engineering Nanoparticles in Near-Critical and Supercritical Water (University of Nottingham, Nottingham, 2008)

    Google Scholar 

  40. P. Savage et al., Reactions at supercritical conditions: applications and fundamentals. Am. Inst. Chem. Eng. (AIChE) J. 41(7), 1723–1778 (1995)

    CAS  Google Scholar 

  41. H. Hobbs, Biocatalysis in ‘Green Solvents’, Chemistry (University of Nottingham, Notttingham, 2006)

    Google Scholar 

  42. J.A. Darr, M. Poliakoff, New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem. Rev. 99(2), 495–541 (1999)

    CAS  Google Scholar 

  43. K.S. Morley et al., Clean preparation on nanoparticulate metals in porous supports: a supercritical route. J. Chem. Mater. 12, 1898–1905 (2002)

    CAS  Google Scholar 

  44. J.B. Dunn, D.I. Urquhart, P.E. Savage, Terephthlic acid synthesis in supercritical water. Adv. Synth. Catal. 344(3–4), 385–392 (2002)

    CAS  Google Scholar 

  45. T. Adschiri, Y. Hakuta, K. Arai, Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind. Eng. Chem. Res. 39(12), 4901–4907 (2000)

    CAS  Google Scholar 

  46. T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water. Am. Ceram. Soc. 75(9), 2615–2618 (1992)

    CAS  Google Scholar 

  47. M. Sućeska, Evaluation of detonation energy from EXPLO5 computer code results. Propellants Explos. Pyrotech. 24(5), 280–285 (1999)

    Google Scholar 

  48. M. Sućeska, Calculation of the detonation properties of C-H-N-O explosives. Propellants Explos. Pyrotech. 16(4), 197–202 (1991)

    Google Scholar 

  49. S. Elbasuney et al., Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Appl. Surf. Sci. 419, 328–336 (2017)

    CAS  Google Scholar 

  50. A.I. El-Batal et al., Response surface methodology optimization of melanin production by streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. J. Cluster Sci. 28(3), 1083–1112 (2017)

    CAS  Google Scholar 

  51. M. Abd Elkodous et al., Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf. B 180, 411–428 (2019)

    CAS  Google Scholar 

  52. M.A. Elkodous et al., Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1–xFe2O4; X = 0.9/SiO2/TiO2). J. Mater. Sci.: Mater. Electron. 30(9), 8312–8328 (2019)

    CAS  Google Scholar 

  53. M.A. Maksoud et al., Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co (1–x) Fe2O4;(M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018)

    Google Scholar 

  54. A. Ashour et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    CAS  Google Scholar 

  55. M.A. Maksoud et al., Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci.: Mater. Electron. 30(5), 4908–4919 (2019)

    CAS  Google Scholar 

  56. R.J. Gohari et al., Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination 335(1), 87–95 (2014)

    Google Scholar 

  57. J.-G. Wang et al., Incorporation of nanostructured manganese dioxide into carbon nanofibers and its electrochemical performance. Mater. Lett. 72, 18–21 (2012)

    CAS  Google Scholar 

  58. B.G.S. Raj et al., Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors. Ultrason. Sonochem. 21(6), 1933–1938 (2014)

    Google Scholar 

  59. C. Mandilas et al., Synthesis of aluminium nanoparticles by arc plasma spray under atmospheric pressure. Mater. Sci. Eng. B 178(1), 22–30 (2013)

    CAS  Google Scholar 

  60. M. Paskevicius et al., Mechanochemical synthesis of aluminium nanoparticles and their deuterium sorption properties to 2 kbar. J. Alloys Compd. 481(1–2), 595–599 (2009)

    CAS  Google Scholar 

  61. B. Alinejad, K. Mahmoodi, A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water. Int. J. Hydrogen Energy 34(19), 7934–7938 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

Military technical college is acknowledged for funding the research project entitled “Nanoscopic Cast Metalized Explosive Formulations”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sherif Elbasuney or Gharieb S. El-Sayyad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2093 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., El-Sayyad, G.S., Yehia, M. et al. Novel (MnO2/Al) thermite colloid: an opportunity for energetic systems with enhanced performance. J Mater Sci: Mater Electron 31, 21399–21407 (2020). https://doi.org/10.1007/s10854-020-04653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04653-4

Navigation