Log in

Colloid Thermite Nanostructure: A Novel High Energy Density Material for Enhanced Explosive Performance

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Thermites can offer vigorously-exothermic self sustained reactions. At nanoscale, reaction rate could be enhanced significantly. The most potential oxidizers for nanothermite applications include ferric oxide and copper oxide. Aluminium, with combustion enthalpy of 32,000 J/g, is of concern. Fe2O3 (4.0 nm) and CuO (25.2 nm) nanoparticles (NPs) were synthesized via hydrothermal synthesis. Oxide NPs were re-dispersed in organic solvent with aluminium NPs. The developed stoichiometric colloids were integrated into TNT. Whereas Fe2O3/Al offered an increase in TNT destructive effect by 25%; CuO/Al offered an increase in TNT destructive effect by 35%. The significant impact of CuO/Al mixture could be ascribed to low ignition temperature; the low boiling temperature of resulted Cu metal could contribute to shock wave. Additionally, nanoscopic CuO/Al mixture could offer high oxygen release rate at lower temperature. It can be manifested that the effective thermite reaction propagates at maximum rate was introduced into TNT detonation wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Ritter, S. Braun, High explosives containing ultrafine aluminum ALEX. Propellants Explos. Pyrotech. 26(6), 311–314 (2001)

    Article  CAS  Google Scholar 

  2. N.H. Yen, L.Y. Wang, Reactive metals in explosives. Propellants Explos. Pyrotech. 37(2), 143–155 (2012)

    Article  CAS  Google Scholar 

  3. R.C. Doty et al., Extremely stable water-soluble Ag nanoparticles. Chem. Mater. 17(18), 4630–4635 (2005)

    Article  CAS  Google Scholar 

  4. T.M. Klaptke (ed.), Chemistry of High-Energy Materials, 3rd edn. (Munich, DE GRUYTER, 2015)

    Google Scholar 

  5. V.E. Zarko, A.A. Gromov (eds.), Energetic Nanomaterials Synthesis, Characterization, and Application (Elsevier, Amsterdam, 2016)

    Google Scholar 

  6. P.P. Vadhe et al., Cast aluminized explosives (review). Combust. Explos. Shock Waves 44(4), 461–477 (2008)

    Article  Google Scholar 

  7. S. Elbasuney, A. Fahd, Combustion wave of metalized extruded double-base propellants. Fuel 237, 1274–1280 (2019)

    Article  CAS  Google Scholar 

  8. R. Sadek et al., Novel yellow colored flame compositions with superior spectral performance. Def. Technol. 13(1), 33–39 (2017)

    Article  Google Scholar 

  9. A.K. Mohamed, H.E. Mostafa, S. Elbasuney, Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation. J. Hazard. Mater. 301, 492–503 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. S. Elbasuney, A. Fahd, H.E. Mostafa, Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture. Fuel 208, 296–304 (2017)

    Article  CAS  Google Scholar 

  11. J. Conkling, C. Mocella (eds.), Chemistry of Pyrotechnics Basic Principles and Theory, 2nd edn. (CRC, London, 2012)

    Google Scholar 

  12. M.L. Chan et al., Castable Thermobaric Explosive Formulations (The United State of America Repredented by The Secretary of The Navy, United States, 2005), p. 5

  13. L. Shen et al., Preparation and characterization of Al/B/Fe2O3 nanothermites. Sci. China Chem. 57(6), 797–802 (2014)

    Article  CAS  Google Scholar 

  14. W.A. Trzciński, L. Maiz, Thermobaric and enhanced blast explosives—properties and testing methods. Propellants Explos. Pyrotech. 40, 632–644 (2015)

    Article  CAS  Google Scholar 

  15. J. Shin et al., Numerical modeling of close-in detonations of high explosives. Eng. Struct. 81, 88–97 (2014)

    Article  Google Scholar 

  16. M.B. Talawar et al., Emerging trends in advanced high energy materials. Combust. Explos. Shock Waves 43(1), 62–72 (2007)

    Article  Google Scholar 

  17. G. Jian et al., Nanothermite reactions: is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust. Flame 160(2), 432–437 (2013)

    Article  CAS  Google Scholar 

  18. D. Moradkhani, M. Malekzadeh, E. Ahmadi, Nanostructured MnO2 synthesized via methane gas reduction of manganese ore and hydrothermal precipitation methods. Trans. Nonferrous Met. Soc. China 23(1), 134–139 (2013)

    Article  CAS  Google Scholar 

  19. L. Kang et al., Urea-assisted hydrothermal synthesis of manganese dioxides with various morphologies for hybrid supercapacitors. J. Alloy. Compd. 648, 190–194 (2015)

    Article  CAS  Google Scholar 

  20. S. Elbasuney, Enhanced flame retardant polymer nanocomposites, in School of Chemical and Environmental Engineering (University of Nottingham, Nottingham, 2013), p. 280

  21. S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)

    Article  CAS  Google Scholar 

  22. S. Elbasuney, Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015)

    Article  CAS  Google Scholar 

  23. S. Elbasuney, Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent. Particuology 22, 66–71 (2015)

    Article  CAS  Google Scholar 

  24. S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)

    Article  CAS  Google Scholar 

  25. S. Elbasuney, Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technol. 305, 538–545 (2017)

    Article  CAS  Google Scholar 

  26. K. Byrappa, S. Ohara, T. Adschiri, Nanoparticles synthesis using supercritical fluid technology—towards biomedical applications. Adv. Drug Deliv. Rev. 60(3), 299–327 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. S. Elbasuney, S.F. Mostafa, Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher. Powder Technol. 278, 72–83 (2015)

    Article  CAS  Google Scholar 

  28. K. Byrappa, M. Yoshimura (eds.), Handbook of Hydrothermal Technology (William Andrew, Norwich, 2001)

    Google Scholar 

  29. J. Li, Engineering Nanoparticles in Near-Critical and Supercritical Water (University of Nottingham, Nottingham, 2008)

    Google Scholar 

  30. P. Savage et al., Reactions at supercritical conditions: applications and fundamentals. Am. Inst. Chem. Eng. J. 41(7), 1723–1778 (1995)

    Article  CAS  Google Scholar 

  31. H.R. Hobbs, Biocatalysis in ’ Green Solvents’ (University of Nottingham, Nottingham, 2006)

    Google Scholar 

  32. K.S. Morley et al., Clean preparation on nanoparticulate metals in porous supports: a supercritical route. J. Chem. Mater. 12, 1898–1905 (2002)

    Article  CAS  Google Scholar 

  33. J.A. Darr, M. Poliakoff, New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem. Rev. 99(2), 495–541 (1999)

    Article  CAS  PubMed  Google Scholar 

  34. T. Adschiri, Y. Hakuta, K. Arai, Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind. Eng. Chem. Res. 39(12), 4901–4907 (2000)

    Article  CAS  Google Scholar 

  35. T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water. Am. Ceram. Soc. 75(9), 2615–2618 (1992)

    Article  CAS  Google Scholar 

  36. M. Sućeska, Evaluation of detonation energy from EXPLO5 computer code results. Propellants Explos. Pyrotech. 24(5), 280–285 (1999)

    Article  Google Scholar 

  37. M. Sućeska, Calculation of the detonation properties of C-H-N-O explosives. Propellants Explos. Pyrotech. 16(4), 197–202 (1991)

    Article  Google Scholar 

  38. S. Elbasuney et al., Super-thermite (Al/Fe2O3) fluorocarbon nanocomposite with stimulated infrared thermal signature via extended primary combustion zones for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym Mater. 28, 2231–2240 (2018)

    Article  CAS  Google Scholar 

  39. S. Elbasuney et al., Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Appl. Surf. Sci. 419, 328–336 (2017)

    Article  CAS  Google Scholar 

  40. P. Belavi et al., Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys. 132(1), 138–144 (2012)

    Article  CAS  Google Scholar 

  41. M.A. Maksoud et al., Synthesis and characterization of metals-substituted cobalt ferrite [MxCo(1−x)Fe2O4;(M = Zn, Cu and Mn; x= 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng., C 92, 644–656 (2018)

    Article  CAS  Google Scholar 

  42. A. Ashour et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    Article  CAS  Google Scholar 

  43. M.A. Maksoud et al., Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci.: Mater. Electron. 30(5), 4908–4919 (2019)

    CAS  Google Scholar 

  44. K. Pal, M.A. Elkodous, M.M. Mohan, CdS nanowires encapsulated liquid crystal in-plane switching of LCD device. J. Mater. Sci.: Mater. Electron. 29(12), 10301–10310 (2018)

    CAS  Google Scholar 

  45. V.C. Karade et al., A green approach for the synthesis of α-Fe2O3 nanoparticles from Gardenia resinifera plant and it’s In vitro hyperthermia application. Heliyon 5(7), e02044 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. D.E. Fouad et al., Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results Phys. 12, 1253–1261 (2019)

    Article  Google Scholar 

  47. M. Sharma, α-Fe2O3 Preparation by Sol-Gel Method (2017)

  48. T. Liang et al., Design of Functionalized α-Fe2O3 (III) Films with Long-Term Anti-wetting Properties. (Ceramics International, 2019)

  49. M. Tadic et al., Magnetic properties of hematite (α-Fe2O3) nanoparticles synthesized by sol-gel synthesis method: the influence of particle size and particle size distribution. J. Electr. Eng. 70(7), 71–76 (2019)

    Google Scholar 

  50. Q.Z. Zeng et al., Hydrothermal synthesis of monodisperse α-Fe2O3 hollow microspheroids and their high gas-sensing properties. J. Alloys Compd. 705, 427–437 (2017)

    Article  CAS  Google Scholar 

  51. S. Elbasuney, Novel colloidal molybdenum hydrogen bronze (MHB) for instant detection and neutralization of hazardous peroxides. TrAC, Trends Anal. Chem. 102, 272–279 (2018)

    Article  CAS  Google Scholar 

  52. K. Pal et al., Soft, self-assembly liquid crystalline nanocomposite for superior switching. Electron. Mater. Lett. 15(1), 84–101 (2019)

    Article  CAS  Google Scholar 

  53. G. Govindasamy et al., Growth dynamics of CBD-assisted CuS nanostructured thin-film: optical, dielectric and novel switchable device applications. J. Mater. Sci.: Mater. Electron. 30(17), 16463–16477 (2019)

    CAS  Google Scholar 

  54. P.K. Tiwari et al., Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings. Ecotoxicol. Environ. Saf. 176, 321–329 (2019)

    Article  CAS  PubMed  Google Scholar 

  55. M. Suceska (ed.), Test Methods for Explosives (Springer, New York, 1995)

    Google Scholar 

  56. E.L. Dreizin, Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35(2), 141–167 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt and ZEISS microscope team at Cairo, Egypt for their invaluable support of this study.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sherif Elbasuney or Gharieb S. El-Sayyad.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., El-Sayyad, G.S., Ismael, S. et al. Colloid Thermite Nanostructure: A Novel High Energy Density Material for Enhanced Explosive Performance. J Inorg Organomet Polym 31, 559–565 (2021). https://doi.org/10.1007/s10904-020-01687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01687-3

Keywords

Navigation