Log in

Investigation of structural, electrical and dielctrical properties of Pr0.67Ba0.22Sr0.11Mn1−xFexO3 (0 ≤ x ≤ 0.2) perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, we have studied the structural, electrical and dielectrical properties of Pr0.67Ba0.22Sr0.11Mn1−xFexO3 (0 ≤ x ≤ 0.2) materials prepared through the solid state reaction. This study has been performed using admittance spectroscopy technique over a wide range of temperatures (80–340 K) and frequencies (40 Hz–10 MHz). The variation of conductivity with temperature shows a metal–semiconductor transition for x = 0 and 0.05. A semiconductor behavior is noticed for the others compositions. The transition temperature TMS was found to be about 220 and 90 K for samples with x = 0 and 0.05, respectively. It is also found that the conductivity decreases with Fe concentration, such behavior is related to a reduction of double exchange mechanism. The conduction mechanism is described by thermally activated hop** of small polaron. The activation energy of such process is sensitive to the iron concentration. This energy increases with increasing Fe content from Ea = 22 meV for x = 0 to Ea = 67 meV for x = 0.20. The dielectric permittivity as function of the temperature is characterized by the appearance of dielectric transition which is described by the Curie–Weiss law. The dielectric transition temperature Td change with the iron concentration and it is found to be 100, 170, 140 and 180 K for x = 0.05, 0.10, 0.15 and 0.20, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Turki, G. Remenyi, S.H. Mahmood, E.K. Hlil, M. Ellouze, F. Halouani, Magnetic contributions to the specific heat of La0.8Ca0.2Mn1–xCoxO3 perovskite. Mater. Res. Bull. 84, 245 (2016)

    Article  Google Scholar 

  2. S. Zouari, M.L. Kahn, M. Ellouze, F. Elhalouani, Effect of iron substitution on the physico-chemical properties of Pr0.6La0.1Ba0.3Mn1–xFexO3 manganites (with 0 ≤ x ≤ 0.3). Eur. Phys. J. Plus 130, 177 (2015)

    Article  Google Scholar 

  3. F. Ben Jemaa, S.H. Mahmood, M. Ellouze, E.K. Hlil, F. Halouani, Structural, magnetic, magnetocaloric, and critical behavior of selected Ti-doped manganites. Ceram. Int. 41, 8191 (2015)

    Article  Google Scholar 

  4. H. Omrani, M. Mansouri, W. Cheikhrouhou Koubaa, M. Koubaa, A. Cheikhrouhou, Structural, magnetic and magnetocaloric investigations in Pr0.6–xErxCa0.1Sr0.3MnO3 (0 ≤ x ≤ 0.06) manganites. J. Alloy. Compd. 688, 752 (2016)

    Article  Google Scholar 

  5. J.M.D. Coey, M. Viret, S. von Molnar, Mixed-valence manganites. Adv. Phys. 48, 167 (1999)

    Article  Google Scholar 

  6. M.B. Salamon, M. Jaime, The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583 (2001)

    Article  Google Scholar 

  7. C.N.R. Rao, A. Arulraj, A.K. Cheetham, B. Raveau, Charge ordering in the rare earth manganates: the experimental situation. J. Phys.: Condens. Matter 12, R83 (2000)

    Google Scholar 

  8. C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951)

    Article  Google Scholar 

  9. A.J. Millis, P.B. little Wood, B.I. Shraiman, Double exchange alone does not explain the resistivity of La1–xSrxMnO3. Phys. Rev. Lett. 74, 5144 (1995)

    Article  Google Scholar 

  10. L.M. Rodriguez-Martinez, J.P. Atfield, Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B 54, R15622 (1996)

    Article  Google Scholar 

  11. M. Mansouri, H. Omrani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Madouri, A. Cheikhrouhou, Effect of vanadium do** on structural, magnetic and magnetocaloric properties of La0.5Ca0.5MnO3. J. Magn. Magn. Mater. 401, 593 (2016)

    Article  Google Scholar 

  12. G.M. Keith, C.A. Kirk, K. Sarma, N.M. Alford, E.J. Cussen, M.J. Rosseinsky, D.C. Sinclair, Synthesis, crystal structure, and characterization of Ba(Ti1/2Mn1/2)O3: a high permittivity 12R-type hexagonal perovskite. Chem. Mater. 16, 2007 (2004)

    Article  Google Scholar 

  13. A.M. Smith, H. Duan, A.M. Mohs, S. Nie, Synthesis, bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 60, 1226 (2008)

    Article  Google Scholar 

  14. A. Hädicke, W. Krech, Synthesis, Frequency-dependent Cooper-pair tunneling in ultrasmall superconductor-insulator-superconductor junctions. Phys. Rev. B 52, 13526 (1995)

    Article  Google Scholar 

  15. R. Waser, Electronic properties of grain boundaries in SrTiO3 and BaTiO3 ceramics. Solid State Ionics 75, 89 (1995)

    Article  Google Scholar 

  16. S.K. Roy, M.E. Orazem, Analysis of flooding as a stochastic process in polymer electrolyte membrane (PEM) fuel cells by impedance techniques. J. Power Sources 184, 212 (2008)

    Article  Google Scholar 

  17. S. Lanfredi, A.C.M. Rodrigues, Impedance spectroscopy study of the electrical conductivity and dielectric constant of polycrystalline LiNbO3. J. Appl. Phys. 86, 2215 (1999)

    Article  Google Scholar 

  18. F. Ben Jemaa, S. Mahmood, M. Ellouze, E.K. Hlil, F. Halouani, I. Bsoul, M. Awawdeh, Structural, magnetic and magnetocaloric properties of La0.67Ba0.22Sr0.11Mn1–xFexO3 nanopowders. Solid State Sci. 37, 121 (2014)

    Article  Google Scholar 

  19. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  20. T. Roisnel, J. Rodriguez-Carvajal, Computer Program, FULLPROF, LLB-LCSIM (2003)

  21. M.S. Sahasrabudhe, S.I. Patil, S.K. Date, D.P. Adhi, S.D. Kulkarni, P.A. Joy, R.N. Bathe, Influence of magnetic (Fe+ 3) and non-magnetic (Ga+ 3) ion do** at Mn-site on the transport and magnetic properties of La0.7Ca0.3MnO3. Solid State Commun. 137, 595 (2006)

    Article  Google Scholar 

  22. Y.L. Chang, Q. Huang, C.K. Ong, Effect of Fe do** on the magnetotransport properties in Nd0.67Sr0.33MnO3 manganese oxides. J. Appl. Phys. 91, 789 (2002)

    Article  Google Scholar 

  23. Q. Huang, Z.W. Li, J. Li, C.K. Ong, Effect of Fe do** on high field magnetoresistance and low field magnetoresistance at zero field in polycrystalline La0.7Sr0.3Mn1–xFexO3 (x = 0–0.12) thin films. J. Appl. Phys. 89, 7410 (2001)

    Article  Google Scholar 

  24. H. Rahmouni, B. Cherif, M. Baazaoui, K. Khirouni, Effects of iron concentrations on the electrical properties of La0.67Ba0.33Mn1–xFexO3. J. Alloy. Compd. 575, 5 (2013)

    Article  Google Scholar 

  25. J.-W. Cai, C. Wang, B.-G. Shen, J.-G. Zhao, W.-S. Zhan, Colossal magnetoresistance of spin-glass perovskite La0.67Ca0.33Mn0.9Fe0.1O3. Appl. Phys. Lett. 71, 1727 (1997)

    Article  Google Scholar 

  26. M. Nadeem, M.J. Akhtar, A.Y. Khan, R. Shaheen, M.N. Haque, Ac study of 10% Fe-doped La0.65Ca0.35MnO3 material by impedance spectroscopy. Chem. Phys. Lett. 366, 433 (2002)

    Article  Google Scholar 

  27. X. Wen-xu, L. Bao-he, Q. Zheng-nan, J. Han-min, Effect of Fe do** in La1–xSrxMnO3. J. Appl. Phys. 86, 5164 (1999)

    Article  Google Scholar 

  28. H. Rahmouni, A. Selmi, K. Khirouni, N. Kallel, Chromium effects on the transport properties in La0.7Sr0.3Mn1–xCrxO3. J. Alloy. Compd. 533, 93 (2013)

    Article  Google Scholar 

  29. K.P. Padmasree, D.K. Kanchan, A.R. Kulkami, Impedance and modulus studies of the solid electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1 ≤ x/y ≤ 3. Solid State Ionics 177, 475 (2006)

    Article  Google Scholar 

  30. R. Brahem, H. Rahmouni, N. Farhat, J. Dhahri, K. Khirouni, L.C. Costa, Electrical properties of Sn-doped Ba0.75Sr0.25Ti0.95O3 perovskite. Ceram. Int. 40, 9355 (2014)

    Article  Google Scholar 

  31. N.F. Mott, E.A. Davis, Electronic Process in Non-Crystalline Materials. (Clarendon Press, Oxford, 1979)

    Google Scholar 

  32. H. Rahmouni, R. Jemai, N. Kallel, A. Selmi, K. Khirouni, Titanium effects on the transport properties in La0.7Sr0.3Mn1–xTixO3. J. Alloy. Compd. 497, 1 (2010)

    Article  Google Scholar 

  33. H. Rahmouni, A. Selmi, K. Khirouni, N. Kallel, Chromium effects on the transport properties in La0.7Sr0.3Mn1–xCrxO3. J. Alloy. Compd. 533, 93 (2012)

    Article  Google Scholar 

  34. R. Tlili, M. Khelil, M. Bejar, M. Bekri, E. Dhahri, K. Khirouni, Role of gallium ion on the conducting properties of La0.7(Ba, Sr)0.3Mn1–xGaxO3 (x = 0.0, 0.1 and 0.2) perovskite. Ceram. Int. 42, 11256 (2016)

    Article  Google Scholar 

  35. S.B. Ogale, R. Shreekala, R. Bathe, S.K. Date, S.I. Patil, B. Hannoyer, F. Petit, G. Marest, Transport properties, magnetic ordering, and hyperfine interactions in Fe-doped La0.75Ca0.25MnO3: localization-delocalization transition. Phys. Rev. B 57, 7841 (1998)

    Article  Google Scholar 

  36. A.K. Jonscher, The universal dielectric response. Nature 267, 673 (1977)

    Article  Google Scholar 

  37. A.M. Abo El Ata, M.K. El Nimr, S.M. Attia, D. El Kony, A.H. Al Hammadi, Studies of AC electrical conductivity and initial magnetic permeability of rare-earth-substituted Li–Co ferrites. J. Magn. Magn. Mater. 297, 33 (2006)

    Article  Google Scholar 

  38. L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990), p. 189

    Google Scholar 

  39. L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990), p. 205

    Google Scholar 

  40. H.T. Martirena, J.C. Burfoot, Grain-size and pressure effects on the dielectric and piezoelectric properties of hot-pressed PZT-5. Ferroelectrics 7, 151 (1974)

    Article  Google Scholar 

  41. W.J. Mertz, The surface tension of liquid silicon and germanium. Phys. Rev. 91, 512 (1953)

    Article  Google Scholar 

  42. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectr. Lett. Sect. 44, 55 (1982)

    Article  Google Scholar 

  43. M. Nadeem, M.J. Akhtar, M.N. Haque, Solid State Commun. 145, 263 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The Tunisian Ministry of Higher Education and Scientific Research have supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Snini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snini, K., Rahmouni, H., Ben Jemaa, F. et al. Investigation of structural, electrical and dielctrical properties of Pr0.67Ba0.22Sr0.11Mn1−xFexO3 (0 ≤ x ≤ 0.2) perovskite. J Mater Sci: Mater Electron 29, 2585–2592 (2018). https://doi.org/10.1007/s10854-017-8182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8182-x

Navigation