Log in

Novel highly flexible room temperature humidity sensor based on mesoporous NiO/TUD-1 hybrid nanocomposite

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work presents a pioneering investigation into humidity sensing, focusing on TUD-1, a mesoporous material developed at Technical University of Delft. TUD-1 has a 3-D sponge-like structure that can be synthesized through a versatile and straightforward pathway without the need of surfactants. Incorporation of nickel metal into porous sites of TUD-1 enhances its functionality in the detection of humidity. Several techniques such as SAXS, WA-XRD, FESEM with EDX, HRTEM, FTIR, and BET were utilized to verify its structural and chemical properties. The humidity sensing response of TUD-1-x nanocomposites with varying compositions of nickel (x = 0, 1, 5, 10, 15) was investigated, and it was found that the NiO-doped TUD-1 nanocomposites exhibited better responses to different relative humidity levels. Among the different compositions, the sample with x = 10% was found to be a potential candidate with the most promising results due to its enhanced pore diameter of 10.4 nm. Nickel oxide enhances the material’s sensitivity to moisture, making it more responsive and efficient in detecting changes in humidity levels. The prime specimen exhibited a remarkable resistance change of 4.1 orders, when tested under specific humidity conditions ranging from 11 to 98% with response and recovery times of 47 and 45 s, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Mecenas P, Bastos RTDRM, Vallinoto ACR, Normando D (2020) Effects of temperature and humidity on the spread of covid-19: a systematic review. PLoS ONE 15(9):e0238339. https://doi.org/10.1371/journal.pone.0238339

    Article  CAS  Google Scholar 

  2. Mamat M, Ismail A, Parimon N, Vasimalai N, Abdullah M, Malek M, Yaakob M, Ahmad M, Nafarizal N, Suriani A et al (2022) Heterojunction of SnO2 nanosheet/arrayed ZnO nanorods for humidity sensing. Mater Chem Phys 288:126436. https://doi.org/10.1016/j.matchemphys.2022.126436

    Article  CAS  Google Scholar 

  3. Zhao Q, Jiang Y, Duan Z, Yuan Z, Zha J, Wu Z, Huang Q, Zhou Z, Li H, He F et al (2022) A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chem Eng J 438:135588. https://doi.org/10.1016/j.cej.2022.135588

    Article  CAS  Google Scholar 

  4. Poonia E, Dahiya MS, Tomer VK, Kumar K, Kumar S, Duhan S (2018) Humidity sensing behavior of tin-loaded 3-d cubic mesoporous silica. Physica E 101:284–293. https://doi.org/10.1016/j.physe.2018.04.017

    Article  CAS  Google Scholar 

  5. Jansen JC, Shan Z, Marchese L, Zhou W, vd Puil N, Maschmeyer T (2001) A new templating method for three-dimensional mesopore networks. Chem Commun 8:713–714. https://doi.org/10.1039/B101000J

    Article  Google Scholar 

  6. Heikkilä T, Salonen J, Tuura J, Hamdy M, Mul G, Kumar N, Salmi T, Murzin DY, Laitinen L, Kaukonen AM et al (2007) Mesoporous silica material tud-1 as a drug delivery system. Int J Pharm 331(1):133–138. https://doi.org/10.1016/j.ijpharm.2006.09.019

    Article  CAS  Google Scholar 

  7. Jeong S-M, Burri A, Jiang N, Park S-E (2014) Microwave synthesis of hydrophobic ti-tud-1 mesoporous silica for catalytic oxidation of cycloolefins. Appl Catal A 476:39–44. https://doi.org/10.1016/j.apcata.2014.02.008

    Article  CAS  Google Scholar 

  8. Quek X-Y, Tang Q, Hu S, Yang Y (2009) Liquid phase trans-stilbene epoxidation over catalytically active cobalt substituted TUD-1 mesoporous materials (Co-TUD-1) using molecular oxygen. Appl Catal A 361(1–2):130–136. https://doi.org/10.1016/j.apcata.2009.04.003

    Article  CAS  Google Scholar 

  9. Zhu L, Li L, Wen J, Zeng Y-R (2019) Structural stability and ionic transport property of NaMPO4 (M = V, Cr, Mn, Fe, Co, Ni) as cathode material for Na-ion batteries. J Power Sources 438:227016. https://doi.org/10.1016/j.jpowsour.2019.227016

    Article  CAS  Google Scholar 

  10. Koutavarapu R, Reddy CV, Syed K, Reddy KR, Saleh TA, Lee D-Y, Shim J, Aminabhavi TM (2022) Novel Z-scheme binary zinc tungsten oxide/nickel ferrite nanohybrids for photocatalytic reduction of chromium (Cr (VI)), photoelectrochemical water splitting and degradation of toxic organic pollutants. J Hazard Mater 423:127044. https://doi.org/10.1016/j.jhazmat.2021.127044

    Article  CAS  Google Scholar 

  11. Naik MM, Naik H, Nagaraju G, Vinuth M, Vinu K, Rashmi S (2018) Effect of aluminium do** on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel autocombustion method. J Mater Sci: Mater Electron 29(23):20395–20414. https://doi.org/10.1007/s10854-018-0174

    Article  CAS  Google Scholar 

  12. Hussain HV, Ahmad M, Ansar MT, Mustafa GM, Ishaq S, Naseem S, Murtaza G, Kanwal F, Atiq S (2020) Polymer based nickel ferrite as dielectric composite for energy storage applications. Synth Met 268:116507. https://doi.org/10.1016/j.synthmet.2020.116507

    Article  CAS  Google Scholar 

  13. Malarvizhi M, Meyvel S, Sandhiya M, Sathish M, Dakshana M, Sathya P, Thillaikkarasi D, Karthikeyan S (2021) Design and fabrication of cobalt and nickel ferrites based flexible electrodes for high-performance energy storage applications. Inorg Chem Commun 123:108344. https://doi.org/10.1016/j.inoche.2020.108344

    Article  CAS  Google Scholar 

  14. Samuel E, Aldalbahi A, El-Newehy M, El-Hamshary H, Yoon SS (2021) Nickel ferrite beehive-like nanosheets for binder-free and high-energystorage supercapacitor electrodes. J Alloy Compd 852:156929. https://doi.org/10.1016/j.jallcom.2020.156929

    Article  CAS  Google Scholar 

  15. Askari MB, Salarizadeh P (2020) Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and highperformance asymmetric supercapacitor electrode material. Int J Hydrogen Energy 45(51):27482–27491. https://doi.org/10.1016/j.ijhydene.2020.07.063

    Article  CAS  Google Scholar 

  16. Venkatachalam V, Jayavel R (2015) Novel synthesis of Ni-ferrite (NiFe2O4) electrode material for supercapacitor applications. In: AIP Conference Proceedings, Vol 1665, AIP Publishing LLC, p 140016. https://doi.org/10.1063/1.4918225.

  17. Srinivasamurthy K, Manjunatha K, El-Denglawey A, Rajaramakrishna R, Kubrin S, Pasha A, Angadi VJ (2022) Evaluation of structural, dielectric and LPG gas sensing behavior of porous Ce3+-Sm3+ doped cobalt nickel ferrite. Mater Chem Phys 275:125222. https://doi.org/10.1016/j.matchemphys.2021.125222

    Article  CAS  Google Scholar 

  18. Darshane SL, Suryavanshi S, Mulla I (2009) Nanostructured nickel ferrite: a liquid petroleum gas sensor. Ceram Int 35(5):1793–1797. https://doi.org/10.1016/j.ceramint.2008.10.013

    Article  CAS  Google Scholar 

  19. Telalović S, Ramanathan A, Mul G, Hanefeld U (2010) Tud-1: synthesis and application of a versatile catalyst, carrier, material. J Mater Chem 20(4):642–658. https://doi.org/10.1039/B904193A

    Article  Google Scholar 

  20. Hamdy MS, Amrollahi R, Sinev I, Mei B, Mul G (2014) Strategies to design efficient silica-supported photocatalysts for reduction of Co2. J Am Chem Soc 136(2):594–597. https://doi.org/10.1021/ja410363

    Article  CAS  Google Scholar 

  21. Al-Shehri B, Altass HM, Ashour SS, Shkir M, Abd El Rahman SK, Hamdy MS (2020) Enhancement the photocatalytic performance of semiconductors through composite formation with Eu-TUD-1. Optik 202:163522. https://doi.org/10.1016/j.ijleo.2019.163522

    Article  CAS  Google Scholar 

  22. Hamdy MS, Berg O, Jansen JC, Maschmeyer T, Moulijn JA, Mul G (2006) TiO2 nanoparticles in mesoporous TUD-1: synthesis, characterization and photocatalytic performance in propane oxidation. Chem-A Eur J 12(2):620–628. https://doi.org/10.1002/chem.200500649

    Article  CAS  Google Scholar 

  23. Telalović S, Karmee SK, Ramanathan A, Hanefeld U (2013) Al-TUD-1: introducing tetrahedral aluminium. J Mol Catal A: Chem 368:88–94. https://doi.org/10.1016/j.molcata.2012.11.018

    Article  CAS  Google Scholar 

  24. Antunes MM, Lima S, Fernandes A, Ribeiro MF, Chadwick D, Hellgardt K, Pillinger M, Valente AA (2018) One-pot hydrogen production and cascade reaction of furfural to bioproducts over bimetallic Pd-Ni TUD-1 type mesoporous catalysts. Appl Catal B 237:521–537. https://doi.org/10.1016/j.apcatb.2018.06.004

    Article  CAS  Google Scholar 

  25. Tomer VK, Jangra S, Malik R, Duhan S (2015) Effect of in-situ loading of nano titania particles on structural ordering of mesoporous sba-15 framework. Colloids Surf, A 466:160–165. https://doi.org/10.1016/j.colsurfa.2014.11.025

    Article  CAS  Google Scholar 

  26. Tomer VK, Adhyapak PV, Duhan S, Mulla IS (2014) Humidity sensing properties of ag-loaded mesoporous silica sba-15 nanocomposites prepared via hydrothermal process. Microporous Mesoporous Mater 197:140–147. https://doi.org/10.1016/j.micromeso.2014.06.007

    Article  CAS  Google Scholar 

  27. Tomer VK, Duhan S, Sharma AK, Malik R, Nehra S, Devi S (2015) One pot synthesis of mesoporous ZnO–SiO2 nanocomposite as high performance humidity sensor. Colloids Surf, A 483:121–128. https://doi.org/10.1016/j.colsurfa.2015.07.046

    Article  CAS  Google Scholar 

  28. Waller P, Shan Z, Marchese L, Tartaglione G, Zhou W, Jansen JC, Maschmeyer T (2004) Zeolite nanocrystals inside mesoporous TUD-1: a high-performance catalytic composite. Chem-A Eur J 10(20):4970–4976. https://doi.org/10.1007/s10854-018-0174-y

    Article  CAS  Google Scholar 

  29. Hamdy MS, Al-Zaqri N, Sahlabji T, Eissa M, Haija MA, Alhanash AM, Alsalme A, Alharthi FA, Abboud M (2021) Instant cyclohexene epoxidation over Ni-TUD-1 under ambient conditions. Catal Lett 151:1612–1622. https://doi.org/10.1007/s10562-020-03423-5

    Article  CAS  Google Scholar 

  30. Lowell S, Shields JE, Lowell S, Shields JE (1991) Adsorption isotherms, Powder surface area and porosity 11–13. https://doi.org/10.1007/978-94-015-7955-13

  31. ten Dam J, Badloe D, Ramanathan A, Djanashvili K, Kapteijn F, Hanefeld U (2013) Synthesis, characterisation and catalytic performance of a mesoporous tungsten silicate: W-TUD-1. Appl Catal A 468:150–159. https://doi.org/10.1016/j.apcata.2013.08.025

    Article  CAS  Google Scholar 

  32. Tomer VK, Duhan S (2016) A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance. Sens Actuators, B Chem 223:750–760. https://doi.org/10.1016/j.snb.2015.09.139

    Article  CAS  Google Scholar 

  33. Kim H-J, Lee J-H (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators, B Chem 192:607–627. https://doi.org/10.1016/j.snb.2013.11.005

    Article  CAS  Google Scholar 

  34. Agarwal S, Sharma G (2002) Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal–electrochemical method. Sens Actuators, B Chem 85(3):205–211. https://doi.org/10.1016/S0925-4005(02)00109-0

    Article  CAS  Google Scholar 

  35. Wang L et al (2008) Study on humidity sensing property based on Li-doped mesoporous silica MCM-41. Sens Actuators B: Chem 133(2):622–627

    Article  CAS  Google Scholar 

  36. **a Y et al (2014) The humidity-sensitive property of MCM-48 self-assembly fiber prepared via electrospinning. RSC Adv 4(6):2807–2812. https://doi.org/10.1039/C3RA45339A

    Article  CAS  Google Scholar 

  37. Tomer VK et al (2015) Mn-loaded mesoporous silica nanocomposite: a highly efficient humidity sensor. J Am Ceram Soc 98(3):741–747. https://doi.org/10.1111/jace.13383

    Article  CAS  Google Scholar 

  38. Geng W et al (2007) Humidity sensitive property of Li-doped mesoporous silica SBA-15. Sens Actuators B: Chem 127(2):323–329. https://doi.org/10.1016/j.snb.2007.04.021

    Article  CAS  Google Scholar 

  39. Zhou D, Pang LX, **e HD, Guo J, He B, Qi ZM, Randall CA (2014) Crystal structure and microwave dielectric properties of an ultralow-temperature-fired (AgBi)0.5 WO4 ceramic. Eur J Inorg Chem 2014(2):296–301. https://doi.org/10.1002/ejic.201300789

    Article  CAS  Google Scholar 

  40. Pandey NK, et al. (2012) Humidity sensor based on synthesized pure WO3 and WO3-SnO2 nanocomposite. In: 2012 1st international symposium on physics and technology of sensors (ISPTS-1). IEEE. https://doi.org/10.1109/ISPTS.2012.6260899

  41. Kennedy LJ et al (2014) Biominerals doped nanocrystalline nickel oxide as efficient humidity sensor: a green approach. Mater Sci Eng: B 190:13–20. https://doi.org/10.1016/j.mseb.2014.07.008

    Article  CAS  Google Scholar 

  42. Parimon N et al (2021) Annealing temperature dependency of structural, optical and electrical characteristics of manganese-doped nickel oxide nanosheet array films for humidity sensing applications. Nanomater Nanotechnol 11:1847980420982788. https://doi.org/10.1177/1847980420982788

    Article  CAS  Google Scholar 

  43. Wang R et al (2010) Direct-current and alternating-current analysis of the humidity-sensing properties of nickel oxide doped polypyrrole encapsulated in mesoporous silica SBA-15. J Appl Polym Sci 115(6):3474–3480. https://doi.org/10.1002/app.31408

    Article  CAS  Google Scholar 

  44. Guo H et al (2017) Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 9(19):6246–6253. https://doi.org/10.1039/c7nr01016h

    Article  CAS  Google Scholar 

  45. Park S-J, Jeon J-Y, Ha T-J (2022) Wearable humidity sensors based on bar-printed poly (ionic liquid) for real-time humidity monitoring systems. Sens Actuators, B Chem 354:131248. https://doi.org/10.1016/j.snb.2021.131248

    Article  CAS  Google Scholar 

  46. Yu S, Zhang H, Chen C, Lin C (2019) Investigation of humidity sensor based on au modified ZnO nanosheets via hydrothermal method and first principle. Sens Actuators, B Chem 287:526–534. https://doi.org/10.1016/j.snb.2019.02.089

    Article  CAS  Google Scholar 

  47. Chaloeipote G et al (2021) High-performance resistive humidity sensor based on Ag nanoparticles decorated with graphene quantum dots. R Soc Open Sci 8(7):210407. https://doi.org/10.1098/rsos.210407

    Article  CAS  Google Scholar 

  48. Hosseini ZS et al (2017) A new approach to flexible humidity sensors using graphene quantum dots. J Mater Chem C 5(35):8966–8973. https://doi.org/10.1039/c7tc01740e

    Article  CAS  Google Scholar 

  49. He P et al (2018) Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 10(12):5599–5606. https://doi.org/10.1039/c7nr08115d

    Article  CAS  Google Scholar 

Download references

Acknowledgement

One of the authors, Aryan Boora, is grateful to the UGC for providing funding for the investigation under JRF scheme (NTA Ref. No.: 221610122664) and the DST inspired FIST Laboratory in Department of Physics, DCRUST Murthal to perform the experimental results utilising humidity chamber.

Author information

Authors and Affiliations

Authors

Contributions

In this work, Aryan Boora did synthesis, collected and analysed the data, optimized the results and wrote the paper. Surender Duhan and Vinod Kumar served as scientific advisors and critically reviewed the study.

Corresponding author

Correspondence to Surender Duhan.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Ethical approval

Not applicable.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boora, A., Duhan, S. & Kumar, V. Novel highly flexible room temperature humidity sensor based on mesoporous NiO/TUD-1 hybrid nanocomposite. J Mater Sci 58, 15421–15437 (2023). https://doi.org/10.1007/s10853-023-09013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09013-1

Navigation