Log in

Effect of aluminium do** on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work designates the preparation of nanocrystalline nickel ferrite and aluminium-doped nickel ferrite nanoparticles with general formula NiAlxFe2−xO4 (x = 0–0.7) prepared by the sol–gel auto-combustion method. The structural (XRD and FTIR), morphological (SEM with EDAX, HRTEM with SAED) and optical (UV–Visible DRS and Luminescence spectroscopy) properties of the products were characterized. XRD studies revealed the formation of the single phase with a cubic spinel structure with an average crystallite size varies between 19 and 38 nm. The increase in aluminium content caused the variation in the lattice parameter (8.2782–8.3366 Å). SEM images shows the morphology have nanocrystalline behavior with a spherical structure. FTIR represents the characteristic peaks of M–O vibrations in tetrahedral (~ 591 cm−1) and octahedral (~ 398 cm−1) sites. From the UV–Vis DRS spectra, the band gap is decreasing with increasing do**, estimated to be 2.03–1.90 eV. The luminescence spectrum displays violet, blue, green, and orange emission. The aluminium-doped nickel ferrite nanoparticles act as an exceptional photocatalyst for the degradation of rose bengal dye (99.8% in 150 min) with respect to bulk material (63% in 150 min) under visible light (300 W tungsten lamp) irradiation. Furthermore, these nanoparticles were acted against gram-negative bacteria stain (Salmonella typhi, Pseudomonas aeruginosa, and Escherichia coli).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. X. Sun, W. Luo, L. Chen, L. Zheng, C. Bao, P. Sun, N. Huang, Y. Sun, L. Fang, L. Wang, Synthesis of porous Al doped ZnO nanosheets with high adsorption and photo decolorizative activity and the key role of Al do** for methyl orange removal. RSC Adv. 6, 2241 (2015)

    Article  Google Scholar 

  2. A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications. Catalysts 3, 189 (2013)

    Article  CAS  Google Scholar 

  3. B.I. Kharisov, H.V.R. Dias, O.V. Kharissova, Mini-review: ferrite nanoparticles in the catalysis. Arb. J. Chem. (2014). https://doi.org/10.1016/j.arabjc.2014.10.049

    Article  Google Scholar 

  4. M. Vinuth, H.S.B. Naik, B.M. Vinoda, S.M. Pradeepa, G.A. Kumar, K.C. Sekhar, Rapid removal of hazardous rose bengal dye using Fe(III)—montmorillonite as an effective adsorbent in aqueous solution. J Environ. Anal. Toxicol. 6, 355 (2016)

    Google Scholar 

  5. K.N. Harish, H.S.B. Naik, P.N.P. Kumar, R. Viswanath, Optical and photocatalytic properties of solar light active Nd substituted Ni ferrite catalysts: For environmental protection. ACS Sustain. Chem. Eng. 1(9), 1143 (2013)

    Article  CAS  Google Scholar 

  6. N.M. Mahmoodi, M. Bashiri, S.J. Moeen, Synthesis of nickel–zinc ferrite magnetic nanoparticle and dye degradation using photocatalytic ozonation. Mater. Res. Bull. 47, 4403 (2012)

    Article  CAS  Google Scholar 

  7. A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv. 4, 37003 (2014)

    Article  CAS  Google Scholar 

  8. G. Jiang, S. Zhang, Y. Zhu, S. Gao, H. **, L. Luo, F. Zhang, J. **, Hydrogel-embedded tight ultrafiltration membrane with superior anti-dye-fouling property for low-pressure driven molecule separation. J. Mater. Chem. A6, 2927 (2018)

    Article  Google Scholar 

  9. F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl. Catal. B 202, 217 (2017)

    Article  CAS  Google Scholar 

  10. B. Ren, C. Han, A.H. Al Anazi, M.N. Nadagouda, D.D. Diounysiou, Iron-based nanomaterials for the treatment of emerging environmental contaminants. ACS Symp. Ser. 1150, 135 (2013)

    Article  CAS  Google Scholar 

  11. Z. Yao, F. Jia, S. Tian, C.X. Li, Z. Jiang, X. Bai, Microporous Ni-Doped TiO2 film photocatalyst by plasma electrolytic oxidation. ACS Appl. Mater. Interfaces 2(9), 2617 (2010)

    Article  CAS  Google Scholar 

  12. R. Satheesh, K. Vignesh, A. Suganthi, M. Rajarajan, Visible light responsive photocatalytic applications of transition metal (M=Cu, Ni and Co) doped α-Fe2O3nanoparticles. J. Environ. Chem. Eng. 2, 1956 (2014)

    Article  CAS  Google Scholar 

  13. K. Hashimot, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44(12R), 8269 (2005)

    Article  Google Scholar 

  14. G. Nagaraju, H. Nagabhushana, R.B. Basavaraj, G.K. Raghu, D. Suresh, H. Rajanaika, S.C. Sharma, Green, nonchemical route for the synthesis of ZnO superstructures, evaluation of its applications toward photocatalysis, photoluminescence, and biosensing. Cryst. Growth Des. 16(12), 6828 (2016)

    Article  Google Scholar 

  15. S.B. Patil, T.N. Ravishankar, K. Lingaraju, G.K. Raghu, G. Nagaraju, Multiple applications of combustion derived nickel oxide nanoparticles. J. Mater. Sci.: Mater. Electron.​ 29(1), 277 (2018)

    CAS  Google Scholar 

  16. M. Alagiri, S.B.A. Hamid, Sol–gel synthesis of α-Fe2O3 nanoparticles and its photocatalytic application. J. Sol-Gel. Sci. Technol. 74(3), 783 (2015)

    Article  CAS  Google Scholar 

  17. W. Chu, W.K. Choy, T.Y. So, The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline. J. Hazard. Mater. 141(1), 86 (2007)

    Article  CAS  Google Scholar 

  18. K. Karthik, S. Dhanuskodi, C. Gobinath, Photocatalytic and antibacterial activities of hydrothermally prepared CdO nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 11420 (2017)

    CAS  Google Scholar 

  19. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Sivaramakrishnan, Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens. Spectrochim. Acta A 139, 7 (2015)

    Article  CAS  Google Scholar 

  20. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Nanostructured CdO-NiO composite for multifunctional applications. J. Phys. Chem. Solids 112, 106 (2018)

    Article  CAS  Google Scholar 

  21. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401 (2007)

    Article  CAS  Google Scholar 

  22. A.T. Raghavender, D. Paji, K. Zadro, T. Milekovic, P.V. Rao, K.M. Jadhav, D. Ravinder, Synthesis and magnetic properties of NiFe2–xAlxO4 nanoparticles. ‎J. Magn. Magn. Mater. 316, 1 (2007)

    Article  CAS  Google Scholar 

  23. F.M. Moghaddam, G. Tavakoli, A. Aliabadi, Application of nickel ferrite and cobalt ferrite magnetic nanoparticles in C–O bond formation: a comparative study between their catalytic activities. RSC Adv. 5, 59142 (2015)

    Article  CAS  Google Scholar 

  24. K.N. Manukumar, G. Nagaraju, B. Kishore, C. Madhu, N. Munichandraiah, Ionic liquid-assisted hydrothermal synthesis of SnS nanoparticles: electrode materials for lithium batteries, photoluminescence and photocatalytic activities. J. Energy Chem. 27(3), 806 (2018)

    Article  Google Scholar 

  25. R. Sharma, S. Bansal, S. Singhal, Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M=Cu, Zn, Ni and Co) in the structure. RSC Adv. 5(8), 6006 (2015)

    Article  CAS  Google Scholar 

  26. V.K. Garg, V.K. Sharma, E. Kuzmann, Purification of water by ferrites-mini review. ACS Symp. Ser. 1238, 137 (2016)

    Article  CAS  Google Scholar 

  27. S.V. Bhosale, P.S. Ekambe, S.V. Bhoraskar, V.L. Mathe, Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity. Appl. Surf. Sci. 441, 724 (2018)

    Article  CAS  Google Scholar 

  28. N. Sanpo, J. Wang, C.C. Berndt, Influence of chelating agents on the microstructure and antibacterial property of cobalt ferrite nanopowders. J. Aust. Cer. Soc. 49(1), 84 (2013)

    CAS  Google Scholar 

  29. S.B. Patil, H.S.B. Naik, G. Nagaraju, R. Viswanath, S.K. Rashmi, M.V. Kumar, Sugarcane juice mediated eco-friendly synthesis of visible light active zinc ferrite nanoparticles: application to degradation of mixed dyes and antibacterial activities. Mater. Chem. Phys. 212, 351 (2018)

    Article  CAS  Google Scholar 

  30. A. Samavati, M.K. Mustafa, A.F. Ismail, M.H.D. Othman, M.A. Rahman, Copper-substituted cobalt ferrite nanoparticles: structural, optical and antibacterial properties. Mater. Express 6, 473 (2016)

    Article  CAS  Google Scholar 

  31. N. Sanpo, C.C. Berndt, C. Wen, J. Wang, Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater. 9, 5830 (2013)

    Article  CAS  Google Scholar 

  32. S.B. Patil, H.S.B. Naik, G. Nagaraju, R. Viswanath, S.K. Rashmi, Synthesis of visible light active Gd3+-substituted ZnFe2O4 nanoparticles for photocatalytic and antibacterial activities. Eur. Phys. J. Plus 132, 328 (2017)

    Article  Google Scholar 

  33. G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, Structural, optical and magnetic studies of Ce doped NiFe2O4 nanoparticles. J. Magn. Magn. Mater. 345, 65 (2013)

    Article  CAS  Google Scholar 

  34. N. Deraz, A. Alarifi, Processing and evaluation of alumina doped nickel ferrite nano-particles. Int. J. Electrochem. Sci. 7, 4585 (2012)

    CAS  Google Scholar 

  35. P. **ong, Y. Fu, L. Wang, X. Wang, Multi-walled carbon nanotubes supported nickel ferrite: a magnetically recyclable photocatalyst with high photocatalytic activity on degradation of phenols. Chem. Eng. J. 195, 149 (2012)

    Article  Google Scholar 

  36. K. Nejati, R. Zabihi, Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem. Cent. J. 6, 23 (2012)

    Article  CAS  Google Scholar 

  37. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Mater. Res. Bull. 46, 2204 (2011)

    Article  CAS  Google Scholar 

  38. S.K. Rashmi, H.S.B. Naik, H. Jayadevappa, R. Viswanath, S.B. Patil, M.M. Naik, Solar light responsive Sm-Zn ferrite nanoparticle as efficient photocatalyst. Mater. Sci. Eng. B 225, 86 (2017)

    Article  CAS  Google Scholar 

  39. T.K. Kundu, S. Mishra, N. Karak, P. Barik, Effect of Ti4+ ions do** on microstructure and dc resistivity of nickel ferrites. J. Phys. Chem. Solids 73, 579 (2012)

    Article  CAS  Google Scholar 

  40. X.U. Shihon, W. Shangguan, Y. Jian, C. Mingxia, S.H.I. Jianwei, Preparation and photocatalytic properties of magnetically separable TiO2 supported on nickel ferrite. Chin. J. Chem. Eng. 15(2), 190 (2007)

    Article  Google Scholar 

  41. C. Singh, S. Bansal, V. Kumar, K.B. Tikoo, S. Singhal, Encrustation of cobalt doped copper ferrite nanoparticles on solid scaffold CNTs and their comparison with corresponding ferrite nanoparticles: a study of structural, optical, magnetic and photo catalytic properties. RSC Adv. 5, 39052 (2015)

    Article  CAS  Google Scholar 

  42. M.R. de Freitas, G.L. de Gouveia, L.J.D. Costa, A.J.A. de Oliveira, R.H.G.A. Kiminami, Microwave assisted combustion synthesis and characterization of nanocrystalline nickel-doped cobalt ferrites. Mater. Res. 19, 27 (2016)

    Article  Google Scholar 

  43. K.V. Kumar, D. Paramesh, P.V. Reddy, Effect of aluminium do** on structural and magnetic properties of Ni-Zn ferrite nanoparticles. World J. Nano Sci. Eng. 5(03), 68 (2015)

    Article  CAS  Google Scholar 

  44. A.R. Chavan, S.D. Birajdar, R.R. Chilwar, K.M. Jadhav, Structural, morphological, optical, magnetic and electrical properties of Al3+ substituted nickel ferrite thin films. J. Alloy. Compd. 735, 2287 (2018)

    Article  CAS  Google Scholar 

  45. I. Maghsoudi, H. Shokrollahi, M.J. Hadianfard, J. Amighian, Synthesis and characterization of NiAlxFe2–xO4 magnetic spinel ferrites produced by conventional method. Powder Technol. 235, 110 (2013)

    Article  CAS  Google Scholar 

  46. S.M. Patange, S.E. Shirsath, S.P. Jadhav, V.S. Hogade, S.R. Kamble, K.M. Jadhav, Elastic properties of nanocrystalline aluminum substituted nickel ferrites prepared by co-precipitation method. J. Mol. Struct. 1038, 40 (2013)

    Article  CAS  Google Scholar 

  47. M. Qin, Q. Shuai, G. Wu, B. Zheng, Z. Wang, H. Wu, Zinc ferrite composite material with controllable morphology and its applications. Mater. Sci. Eng. B 224, 125 (2017)

    Article  CAS  Google Scholar 

  48. H. Phattepur, G.B. Siddaiah, N. Ganganagappa, Synthesis and characterisation of mesoporous TiO2 nanoparticles by novel surfactant assisted sol-gel method for the degradation of organic compounds. Period. Polytechnol. Chem. Eng. (2017). https://doi.org/10.3311/PPch.11789

    Article  Google Scholar 

  49. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Dielectric and antibacterial studies of microwave assisted calcium hydroxide nanoparticles. J. Mater. Sci.: Mater. Electron.​ 28, 16509 (2017)

    CAS  Google Scholar 

  50. K. Karthik, S. Dhanuskodi, Synthesis and characterization of ZnO nanoparticles by microwave assisted method. Intl. J. Emerg. Technol. Innov. Res. 5(3), 1022 (2018)

    Google Scholar 

  51. P. Prabukanthan, R. Lakshmi, G. Harichandran, T. Tatarchuk, Photovoltaic device performance of pure, manganese (Mn2+) doped and irradiated on CuInSe2 thin films. New J. Chem. 42, 11642 (2018)

    Article  CAS  Google Scholar 

  52. A.I. Borhan, A.R. Iordan, M.N. Palamaru, Correlation between structural, magnetic and electrical properties of nanocrystalline Al3+ substituted zinc ferrite. Mater. Res. Bull. 48, 2549 (2013)

    Article  CAS  Google Scholar 

  53. M. Satalkar, S.N. Kane, T. Tatarchuk, J.P. Araújo, Ni addition induced changes in structural, magnetic, and cationic distribution of Zn0.75–xNixMg0.15Cu0.1Fe2O4 nano-ferrite. Spring. Proc. Phys. 214, 357 (2018).

    Article  Google Scholar 

  54. T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloy. Compd. 731, 1256 (2018)

    Article  CAS  Google Scholar 

  55. K.T. Jacob, S. Raj, L. Rannesh, Vegard’s law: a fundamental relation or an approximation? J. Mater. Res. 98(9), 776 (2007)

    CAS  Google Scholar 

  56. G. Mustafa, M.U. Islam, M. Ahmad, W. Zhang, Y. Jamil, A.W. Anwar, M. Hussain, Investigation of structural and magnetic properties of Ce3+-substituted nanosized Co–Cr ferrites for a variety of applications. J. Alloy. Compd. 618, 428 (2015)

    Article  CAS  Google Scholar 

  57. B.R. Babu, T. Tatarchuk, Elastic properties and antistructural modeling for nickel-zinc ferrite-aluminates. Mater. Chem. Phys. 207, 534 (2018)

    Article  Google Scholar 

  58. R. Sharma, S. Raghuvanshi, M. Satalkar, S.N. Kane, T.R. Tatarchuk, F. Mazaleyrat, Effect of 120 MeV 28Si9+ ion irradiation on structural and magnetic properties of NiFe2O4 and Ni0.5Zn0.5Fe2O4. AIP Conf. Proc. 1953, 030055 (2018)

    Article  Google Scholar 

  59. S.N. Kane, S. Raghuvanshi, M. Satalkar, V.R. Reddy, U.P. Deshpande, T.R. Tatarchuk, F. Mazaleyrat, Synthesis, characterization and antistructure modeling of Ni nano ferrite. AIP Conf. Proc. 1953, 030089 (2018)

    Article  Google Scholar 

  60. Y.K. Dasan, B.H. Guan, M.H. Zahari, L.K. Chuan, Influence of La3+ substitution on structure, morphology and magnetic properties of nanocrystalline Ni-Zn ferrite. PLoS ONE 12(1), 1 (2017)

    Article  Google Scholar 

  61. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99(6), 1727 (1955)

    Article  CAS  Google Scholar 

  62. L. Jaswal, B. Singh, Ferrite materials: a chronological review. J. Integr. Sci. Technol. 2(2), 69 (2014)

    Google Scholar 

  63. R. Sridhar, D. Ravinder, K.V. Kumar, Synthesis and characterization of copper substituted nickel nano-ferrites by citrate-gel technique. Adv. Mater. Phys. Chem. 2, 192 (2012)

    Article  Google Scholar 

  64. F. Moeinpour, A. Alimoradi, M. Kazemi, Efficient removal of Eriochrome black-T from aqueous solution using NiFe2O4 magnetic nanoparticles. J. Environ. Health Sci. Eng. 12, 112 (2014)

    Article  Google Scholar 

  65. M.M. Rashada, E.M. Elsayed, M.M. Moharam, R.M. Abou-Shahba, A.E. Saba, Structure and magnetic properties of NixZn1–xFe2O4 nanoparticles prepared through co-precipitation method. J. Alloy. Compd. 486, 759 (2009)

    Article  Google Scholar 

  66. S.P. Tandon, J. Gupta, Measurement of forbidden energy gap of semiconductors by diffuse reflectance technique. Phys. State Sol. 38, 363 (1970)

    Article  CAS  Google Scholar 

  67. C. Singh, A. Goyal, S. Singhal, Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes. Nanoscale 6(14), 7959 (2014)

    Article  CAS  Google Scholar 

  68. A. Manikandan, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Structural, optical and magnetic properties of Zn1−xCuxFe2O4 nanoparticles prepared by microwave combustion method. J. Mol. Struct. 1035, 332 (2013)

    Article  CAS  Google Scholar 

  69. R. Saranya, R.A. Raj, M.S. AlSalhi, S. Devanesan, Dependence of catalytic activity of nanocrystalline nickel ferrite on its structural, morphological, optical, and magnetic properties in aerobic oxidation of benzyl alcohol. J. Supercond. Nov. Magn. 31(4), 1219 (2018)

    Article  CAS  Google Scholar 

  70. S. Talukdar, R. Rakshit, A. Kramer, F.A. Mullerc, K. Mandala, Facile surface modification of nickel ferrite nanoparticles for inherent multiple fluorescence and catalytic activities. RSC Adv. 8(1), 38 (2018)

    Article  CAS  Google Scholar 

  71. J.El Ghoul, Synthesis, structural and optical properties of nanoparticles (Al, V) co-doped zinc oxide. Bull. Mater. Sci. 39, 7 (2016)

    Article  Google Scholar 

  72. A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, Photocatalytic degradation of methyl orange dye by NiFe2O4 nanoparticles under visible irradiation: effect of varying the synthesis temperature. J. Mater. Sci.: Mater. Electron.​ 29(9), 7057 (2018)

    CAS  Google Scholar 

  73. S.K. Jesudoss, J.J. Vijaya, L.J. Kennedy, P.I. Rajan, H.A. Al-Lohedan, R. Jothiramalingam, K. Kaviyarasu, M. Bououdina, Studies on the efficient dual performance of Mn1−xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity. J. Photochem. Photobiol. B 165, 121 (2016)

    Article  CAS  Google Scholar 

  74. S.K. Rashmi, H.S.B. Naik, H. Jayadevappa, C.N. Sudhamani, S.B. Patil, M.M. Naik, Influence of Sm3+ ions on structural, optical and solar light driven photocatalytic activity of spinel MnFe2O4 nanoparticles. J. Solid State Chem. 255, 178 (2017)

    Article  CAS  Google Scholar 

  75. A.A. Murashkina, P.D. Murzin, A.V. Rudakova, V.K. Ryabchuk, A.V. Emeline, D.W. Bahnemann, Influence of the dopant concentration on the photocatalytic activity: Al-doped TiO2. J. Phys. Chem. C 119(44), 24695 (2015)

    Article  CAS  Google Scholar 

  76. Y.K. Penke, G. Anantharaman, J. Ramkumar, K.K. Kara, Aluminum substituted nickel ferrite (Ni–Al–Fe): a ternary metal oxide adsorbent for arsenic adsorption in aqueous medium. RSC Adv. 6, 55608 (2016)

    Article  CAS  Google Scholar 

  77. P.P. Hankare, A.V. Jadhav, R.P. Patil, K.M. Garadkar, I.S. Mulla, R. Sasikala, Photocatalytic degradation of rose bengal in visible light with Cr substituted MnFe2O4 ferrospinel. Arch. Phys. Res. 3, 269 (2014)

    Google Scholar 

  78. A.K. Dutta, S.K. Maji, B. Adhikary, γ-Fe2O3 nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Mater. Res. Bull. 49, 29 (2014)

    Article  Google Scholar 

  79. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities. J. Mater. Sci.: Mater. Electron.​ 29, 5459 (2018)

    CAS  Google Scholar 

  80. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Multifunctional properties of CdO nanostructures Synthesised through microwave assisted hydrothermal method. Mater. Res. Innov. (2018). https://doi.org/10.1080/14328917.2018.1475443

    Article  Google Scholar 

  81. K. Karthik, S. Dhanuskodi, S.P. Kumar, C. Gobinath, S. Sivaramakrishnan, Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater. Lett. 206, 217 (2017)

    Article  CAS  Google Scholar 

  82. V. Revathi, K. Karthik, Microwave-assisted CdO-ZnO-MgO nanocomposites and its photocatalytic and antibacterial studies. J. Mater. Sci. Mater. Electron. 29, 18519 (2018)

    CAS  Google Scholar 

  83. K. Karthik, S. Dhanuskodi, C. Gopinath, S. Sivaramakrishnan, Antibacterial activities of CdO microplates synthesized by hydrothermal method. Int. J. Innov. Res. Sci. Eng. (2014). http://ijirse.in/docs/ican14/ican105.pdf

  84. A. Allafchian, S.A.H. Jalali, H. Bahramian, H. Ahmadvand, Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag–TiO2 nanocomposite. J. Magn. Magn. Mater. 404, 14 (2015)

    Article  Google Scholar 

  85. P.B. Koli, K.H. Kapadnis, Synthesis, Characterization & antimicrobial activity of mixed metal oxides of iron cobalt nickel and zinc. Intern. J. Chem. Phy. Sci. 4, 357 (2014)

    Google Scholar 

  86. K. Ishaq, A.A. Saka, A.O. Kamardeen, A. Ahmed, M.I. Alhassan, H. Abdullahi, Characterization and antibacterial activity of nickel ferrite doped α-alumina nanoparticle. Eng. Sci. Technol. Intern. J. 20(2), 563 (2017)

    Article  Google Scholar 

  87. M. Kooti, P. Kharazi, H. Motamedi, Preparation and antibacterial activity of three-component NiFe2O4@PANI@Ag nanocomposite. J. Mater. Sci. Technol. 30, 1 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, M. Madhukara Naik expresses their gratitude for the University Grant Commission (UGC), New Delhi for providing RGNF (SRF-RGNF-2015-17-SC-KAR-8007) and Kuvempu University. Dr. G. Nagaraju thanks DST-SERB (SB/FT/CS-083/2012) Govt. of India, New Delhi for providing characterization techniques. And also authors thank Siddaganga Institute of Technology, Tumakuru, Karnataka, India for providing lab facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Bhojya Naik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, M.M., Naik, H.S.B., Nagaraju, G. et al. Effect of aluminium do** on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method. J Mater Sci: Mater Electron 29, 20395–20414 (2018). https://doi.org/10.1007/s10854-018-0174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0174-y

Navigation