Log in

Photovoltaic and related properties of Sn-doped disordered CsPbxSn1−xBr3 perovskite: a first-principles calculation

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

A Correction to this article was published on 20 December 2022

This article has been updated

Abstract

Perovskite CsPbBr3 possesses high photovoltaic capability but limited application on account of the toxicity of lead. Sn-doped all-inorganic perovskites CsPbxSn1−xBr3 are designed in order to achieve comprehensive high photovoltaic performance with low toxicity, which is under great influence of chemical compositions and defects. In this paper, the electronic structures and other photovoltaic-related properties of CsPbBr3 and CsSnBr3 are studied by using first-principles method with different functionals. The calculation results show that CsSnBr3 has a lower bandgap than that of CsPbBr3. The transition dipole moment of CsPbBr3 is more even, and the effective masses of electrons and holes are slightly larger than those of CsSnBr3. By calculating the defect formation energies, the types and properties of intrinsic defects of these two crystals are compared, and their effects on photovoltaic-related properties are analyzed. Different proportions of disordered CsPbxSn1−xBr3 crystals constructed by special Quasirandom structure (SQS) method are designed to observe the effect of Sn contents on the electronic structure, and effective masses of electrons and holes of CsPbBr3, and CsPb0.50(Ba/Ca)0.50Br3 are also calculated as a reference. It has been proved that the presence of Sn affects the orbital composition at the valence band maximum of the crystal, making Sn-5s orbitals participate in the formation of valence band maximum, which raises the energy of crystal valence band maximum and reduces the bandgap of the system. The do** of Sn decreases the toxicity of perovskite on the premise of considering the power conversion efficiency, which may provide a theoretical basis for the development of CsPbxSn1−xBr3 photovoltaic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Change history

References

  1. Wasa K (2016) Thin films for material engineering. J Appl Phys 55: 07KA01. https://doi.org/10.7567/jjap.55.07ka01

  2. Ravi VK, Swarnkar A, Chakraborty R, Nag A (2016) Excellent green but less impressive blue luminescence from CsPbBr 3perovskite nanocubes and nanoplatelets. Nanotechnology 27:325708. https://doi.org/10.1088/0957-4484/27/32/325708

    Article  CAS  Google Scholar 

  3. Ullah S, Liu LL, Yang S-E, Liu P, Guo HZ, Chen YS (2021) A modified hybrid chemical vapor deposition method for the fabrication of efficient CsPbBr 3 perovskite solar cells. J Phys D 55:064001. https://doi.org/10.1088/1361-6463/ac3172

    Article  CAS  Google Scholar 

  4. Zhao XG, Yang DW, Ren JC, Sun YH, **ao ZW, Zhang LJ (2018) Rational design of halide double perovskites for optoelectronic applications. Joule 2:1662. https://doi.org/10.1016/j.joule.2018.06.017

    Article  CAS  Google Scholar 

  5. Yen MC, Lee CJ, Liu KH, Peng Y, Leng JF, Chang TH, Chang CC, Tamada K et al (2021) All-inorganic perovskite quantum dot light-emitting memories. Nat Commun 12:4460. https://doi.org/10.1038/s41467-021-24762-w

    Article  CAS  Google Scholar 

  6. Huang XY, Li HB, Zhang CF, Tan SJ, Chen ZZ, Chen L, Lu ZD, Wang XY et al (2019) Efficient plasmon-hot electron conversion in Ag–CsPbBr 3 hybrid nanocrystals. Nat Commun 10:1163. https://doi.org/10.1038/s41467-019-09112-1

    Article  CAS  Google Scholar 

  7. Zhang QG, Wang B, Zheng WL, Kong L, Wan Q, Zhang CY, Li ZC, Cao XY et al (2020) Ceramic-like stable CsPbBr 3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nat Commun 11:31. https://doi.org/10.1038/s41467-019-13881-0

    Article  CAS  Google Scholar 

  8. Meng WW, Wang XM, **ao ZW, Wang JB, Mitzi DB, Yan YF (2017) Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J Phys Chem Lett 8:2999. https://doi.org/10.1021/acs.jpclett.7b01042

    Article  CAS  Google Scholar 

  9. **ao ZW, Meng WW, Wang JB, Mitzi DB, Yan YF (2017) Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater Horizons 4:206. https://doi.org/10.1039/c6mh00519e

    Article  Google Scholar 

  10. Yin WJ, Shi TT, Yan YF (2015) Superior photovoltaic properties of lead halide perovskites: insights from first-principles theory. J Phys Chem C 119:5253. https://doi.org/10.1021/jp512077m

    Article  CAS  Google Scholar 

  11. Islam M, Rahaman MZ, Sen SK (2021) A comparative study of hydrostatic pressure treated environmentally friendly perovskites CsXBr 3 (X= Ge/Sn) for optoelectronic applications. AIP Adv 11:075109

    Article  CAS  Google Scholar 

  12. Deng JD, Xun J, Qin YC, Li M, He RX (2020) Blue-emitting NH 4+-doped MAPbBr 3 perovskite quantum dots with near unity quantum yield and super stability. ChemComm 56:11863. https://doi.org/10.1039/d0cc04912c

    Article  CAS  Google Scholar 

  13. Mahmood Q, Yaseen M, Hassan M, Rashid MS, Tlili I, Laref A (2019) The first-principle study of mechanical, optoelectronic and thermoelectric properties of CsGeBr 3 and CsSnBr3 perovskites. Mater Res Express 6:045901. https://doi.org/10.1088/2053-1591/aaf997

    Article  CAS  Google Scholar 

  14. Yettapu GR, Talukdar D, Sarkar S, Swarnkar A, Nag A, Ghosh P, Mandal P (2016) Terahertz conductivity within colloidal CsPbBr 3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett 16:4838. https://doi.org/10.1021/acs.nanolett.6b01168

    Article  CAS  Google Scholar 

  15. Gupta S, Bendikov T, Hodes G, Cahen D (2016) CsSnBr 3, a lead-free halide perovskite for long-term solar cell application: insights on SnF2 addition. ACS Energy Lett 1:1028. https://doi.org/10.1021/acsenergylett.6b00402

    Article  CAS  Google Scholar 

  16. Sharma R, Sharma A, Agarwal S, Dhaka MS (2022) Stability and efficiency issues, solutions and advancements in perovskite solar cells: a review. Sol Energy 244:516. https://doi.org/10.1016/j.solener.2022.08.001

    Article  CAS  Google Scholar 

  17. Kumari N, Patel SR, Gohel JV (2018) Enhanced stability and efficiency of Sn containing perovskite solar cell with SnCl2 and SnI2 precursors. J Mater Sci: Mater Electron 29:18144. https://doi.org/10.1007/s10854-018-9926-y

    Article  CAS  Google Scholar 

  18. Tosado GA, Lin Y-Y, Zheng E, Yu Q (2018) Impact of cesium on the phase and device stability of triple cation Pb–Sn double halide perovskite films and solar cells. J Mater Chem A 6:17426. https://doi.org/10.1039/C8TA06391E

    Article  CAS  Google Scholar 

  19. Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, et al. (2017) CsPb0. 9Sn0. 1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J Am Chem Soc 139: 14009. https://doi.org/10.1021/jacs.7b07949

  20. Wei M, ** grains with an ultrathin 2D layer. Adv Mater 32:1907058. https://doi.org/10.1002/adma.201907058

    Article  CAS  Google Scholar 

  21. Zhang BB, Wang FB, Zhang HJ, **ao B, Sun QH, Guo J, Hafsia AB, Shao AH et al (2020) Defect proliferation in CsPbBr 3 crystal induced by ion migration. Appl Phys Lett 116:063505. https://doi.org/10.1063/1.5134108

    Article  CAS  Google Scholar 

  22. Zhao Y, Wang Y, Duan J, Yang X, Tang QJJoMCA (2019) Divalent hard Lewis acid doped CsPbBr 3 films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells. J Mater Chem A 7: 6877. https://doi.org/10.1039/C9TA00761J

  23. Kang J, Wang LW (2017) High defect tolerance in lead halide perovskite CsPbBr 3. J Am Chem Soc 8:489. https://doi.org/10.1021/acs.jpclett.6b02800

    Article  CAS  Google Scholar 

  24. Andersen OK (1975) Linear methods in band theory. Phys Rev B 12:3060. https://doi.org/10.1103/PhysRevB.12.3060

    Article  CAS  Google Scholar 

  25. Chagas da Silva M, Lorke M, Aradi B, Farzalipour Tabriz M, Frauenheim T, Rubio A, Rocca D, Deák P (2021) Self-consistent potential correction for charged periodic systems. Phys Rev Lett 126:076401. https://doi.org/10.1103/PhysRevLett.126.076401

    Article  CAS  Google Scholar 

  26. Wood D, Zunger A (1985) A new method for diagonalising large matrices. J Phys A Math Theor 18:1343. https://doi.org/10.1088/0305-4470/18/9/018

    Article  CAS  Google Scholar 

  27. Li WH, **e YQ, Shi HZ, Lu PF, Ren J (2022) Mechanisms of rare earth ions distribution in fluorosilicate glass containing KMnF3 nanocrystals. ACTA PHYS SIN (in press).

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  29. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207. https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  30. Araki G (1948) Interval formula for multiplets of atomic energy levels. I Prog Theor Exp Phys 3:152. https://doi.org/10.1143/ptp/3.2.152

    Article  CAS  Google Scholar 

  31. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  32. Wang V, Xu N, Liu JC, Tang G, Geng WT (2021) VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun 108033. https://doi.org/10.1016/j.cpc.2021.108033

  33. Zunger A, Wei SH, Ferreira LG, Bernard JE (1990) Special quasirandom structures. Phys Rev Lett 65:353. https://doi.org/10.1103/PhysRevLett.65.353

    Article  CAS  Google Scholar 

  34. Wei SH, Ferreira LG, Bernard JE, Zunger A (1990) Electronic properties of random alloys: special quasirandom structures. Phys Rev B 42:9622. https://doi.org/10.1103/PhysRevB.42.9622

    Article  CAS  Google Scholar 

  35. Suzuki M, Uenoyama T, Yanase A (1995) First-principles calculations of effective-mass parameters of AlN and GaN. Phys Rev B 52:8132. https://doi.org/10.1103/PhysRevB.52.8132

    Article  CAS  Google Scholar 

  36. Zahirovic S, Müller RD, Seton M, Flament N, Gurnis M, Whittaker J (1912) Dipole strengths involving the lowest twenty electronic states of H +2. Geochem Geophys Geosyst 13: Q04W11. https://doi.org/10.1016/s0092-640x(73)80002-6

  37. Woolley RVDR (1934) Oscillator strengths and the continuous absorption coefficient. Mon Notices Royal Astron Soc 95:101. https://doi.org/10.1093/mnras/95.2.101

    Article  Google Scholar 

  38. Singh AK (2020) Light management using CsPbBr 3 colloidal quantum dots for luminescent solar concentrators. Methods Appl Fluoresc 8:045008. https://doi.org/10.1088/2050-6120/abb99c

    Article  CAS  Google Scholar 

  39. Ghaithan HM, Alahmed ZA, Qaid SMH, Aldwayyan AS (2020) Structural, electronic, and optical properties of CsPb(Br 1−xClx)3 perovskite: first-principles study with PBE–GGA and mBJ–GGA methods. Materials 13:4944. https://doi.org/10.3390/ma13214944

    Article  CAS  Google Scholar 

  40. Stoumpos CC, Malliakas CD, Peters JA, Liu Z, Sebastian M, Im J, Chasapis TC, Wibowo AC et al (2013) Crystal growth of the perovskite semiconductor CsPbBr 3: a new material for high-energy radiation detection. Cryst Growth Des 13:2722. https://doi.org/10.1021/cg400645t

    Article  CAS  Google Scholar 

  41. Peedikakkandy L, Bhargava P (2016) Composition dependent optical, structural and photoluminescence characteristics of cesium tin halide perovskites. RSC Adv 6:19857. https://doi.org/10.1039/C5RA22317B

    Article  CAS  Google Scholar 

  42. Ma CG, Krasnenko V, Brik MG (2018) First-principles calculations of different (001) surface terminations of three cubic perovskites CsCaBr 3, CsGeBr3, and CsSnBr3. J Phys Chem Sol 115:289. https://doi.org/10.1016/j.jpcs.2017.12.052

    Article  CAS  Google Scholar 

  43. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  44. Griffiths DJ (2004.) Introduction to quantum mechanics, 2nd edn. Pearson Prentice Hall, New Jersey

  45. Li Q, Lian T (2019) Ultrafast charge separation in two-dimensional CsPbBr 3 perovskite nanoplatelets. J Phys Chem Lett 10:566. https://doi.org/10.1021/acs.jpclett.8b03610

    Article  CAS  Google Scholar 

  46. Bi Y, Hutter EM, Fang YJ, Dong QF, Huang JS, Savenije TJ (2016) Charge carrier lifetimes exceeding 15 μs in methylammonium lead iodide single crystals. J Phys Chem Lett 7:923. https://doi.org/10.1021/acs.jpclett.6b00269

    Article  CAS  Google Scholar 

  47. Wu B, Zhou YY, **ng GC, Xu Q, Garces HF, Solanki A, Goh TW, Padture NP et al (2017) Long minority-carrier diffusion length and low surface-recombination velocity in inorganic lead-free CsSnI3 perovskite crystal for solar cells. Adv Funct Mater 27:1604818. https://doi.org/10.1002/adfm.201604818

    Article  CAS  Google Scholar 

  48. Fowler WB (2016) Reference module in materials science and materials engineering || point defects. Elsevier, Pennsylvania, USA

  49. Wang Z, Zhang J, Guo W, **ang W, Hagfeldt A (2021) Formation and stabilization of inorganic halide perovskites for photovoltaics. Matter 4:528. https://doi.org/10.1016/j.matt.2020.12.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51872055 and 52201008), Overseas Expertise Introduction Project for Discipline Innovation (Grant No. B13015), and Fundamental Research Funds for the Central Universities (Grant No. 3072020CF2515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ci Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1349 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, HZ., **g, Y., Li, WH. et al. Photovoltaic and related properties of Sn-doped disordered CsPbxSn1−xBr3 perovskite: a first-principles calculation. J Mater Sci 57, 19846–19856 (2022). https://doi.org/10.1007/s10853-022-07883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07883-5

Navigation