Log in

Structural Stability and Optoelectronic Properties of Lead-Free Halide Perovskite CsSnBr3 by Introducing Transition-Metal Dopants

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In order to promote the actual optoelectronic application of lead-free perovskite CsSnBr3, the stability and optoelectronic properties of metal dopants in the lead-free perovskite CsSnBr3 have been studied systematically by using first-principles calculations based on density functional theory. Cd and Mn do** is more efficient in CsSnBr3 than other considered metal dopants by calculating the doped formation energies. The stability of a do** system is related to the atomic radius of the dopant. Cr, Mn and Cu dopants can enlarge effectively the band gap of CsSnBr3 and show a higher optical absorption coefficient in short wavelength region of visible light compared to undoped ones. Our work may provide a feasible pathway to manipulate and improve the stability and optoelectronic performance of CsSnBr3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Zhang, G.E. Eperon, and H.J. Snaith, Nat. Energy 1, 16048 (2016).

    Article  CAS  Google Scholar 

  2. M. Kulbak, D. Cahen, and G. Hodes, J. Phys. Chem. Lett. 6, 2452 (2015).

    Article  CAS  Google Scholar 

  3. K. Heidrich, W. Schafer, M. Schreiber, J. Sochtig, G. Trendel, J. Treusch, T. Grandke, and H.J. Stolz, Phys. Rev. B 24, 5642–5649 (1981).

    Article  CAS  Google Scholar 

  4. M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, J. Phys. Chem. Lett. 7, 167 (2016).

    Article  CAS  Google Scholar 

  5. M. Roknuzzaman, K. Ostrikov, H.X. Wang, A. Du, and T. Tesfamichael, Sci. Rep. 7, 14025 (2017).

    Article  Google Scholar 

  6. B.H. Li, R.Y. Long, Y. **a, and Q.X. Mi, Angew. Chem. Int. Ed. 57, 13154 (2018).

    Article  CAS  Google Scholar 

  7. D. Moghe, L. Wang, C.J. Traverse, A. Reduoute, M. Sponseller, P.R. Brown, V. Bulovic, and R.R. Lunt, Nano Energy 28, 469 (2016).

    Article  CAS  Google Scholar 

  8. Q.Q. Li, D. Cao, X.Y. Liu, X.Y. Zhou, X.S. Chen, and H.B. Shu, J. Mater. Chem. A 9, 6476 (2021).

    Article  CAS  Google Scholar 

  9. D. Sabba, H.K. Mulmudi, R.R. Prabhakar, T. Krishnamoorthy, T. Baikie, P.P. Boix, S. Mhaisalkar, and N. Mathews, J. Phys. Chem. C 119, 1763 (2015).

    Article  CAS  Google Scholar 

  10. S.J. Clark, C.D. Flint, and J.D. Donaldson, J. Phys. Chem. Solid 42, 133 (1981).

    Article  CAS  Google Scholar 

  11. J.C. Zheng, C.H.A. Huan, A.T.S. Wee, and M.H. Kuok, Surf. Interface Anal. 28, 81 (1999).

    Article  CAS  Google Scholar 

  12. A. Bala and V. Kumar, J. Phys. Chem. C 123, 6965 (2019).

    Article  CAS  Google Scholar 

  13. Y.S. Zhu, G.C. Pan, L. Shao, G. Yang, X.M. Xu, J. Zhao, and Y.L. Mao, J. Alloys Compd. 835, 155390 (2020).

    Article  CAS  Google Scholar 

  14. G. Pan, X. Bai, D. Yang, X. Chen, P. **g, S. Qu, L. Zhang, D. Zhou, J. Zhu, W. Xu, B. Dong, and H. Song, Nano Lett. 17, 8005–8011 (2017).

    Article  CAS  Google Scholar 

  15. Y. Zhou, J. Chen, O.M. Bakr, and H.T. Sun, Chem. Mater. 30, 6589 (2018).

    Article  CAS  Google Scholar 

  16. H.W. Liu, Z.N. Wu, J.R. Shao, D. Yao, H. Gao, Y. Liu, W.L. Yu, H. Zhang, and B. Yang, ACS Nano 11, 2239 (2017).

    Article  CAS  Google Scholar 

  17. J.J. Zhang, L. Yang, Y. Zhong, H.Q. Hao, M. Yang, and R.Y. Liu, Phys. Chem. Chem. Phys. 21, 11175 (2019).

    Article  CAS  Google Scholar 

  18. A. Swarnkar, W.J. Mir, and A. Nag, ACS Energy Lett. 3, 286 (2018).

    Article  CAS  Google Scholar 

  19. T.C. He, J.Z. Li, C. Ren, S.Y. **ao, Y.W. Li, R. Chen, and X.D. Lin, Appl. Phys. Lett. 111, 211105 (2017).

    Article  Google Scholar 

  20. Z.L. Yu, Y.Q. Zhao, Q. Wan, B. Liu, J.L. Yang, and M.Q. Cai, J. Phys. Condens. Matter. 32, 205504 (2020).

    Article  CAS  Google Scholar 

  21. G. Kress and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  22. G. Kress and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  23. G. Kress and D. Joubert, Phys. Rev. B 77, 195408 (2008).

    Article  Google Scholar 

  24. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  25. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  26. I.V. Solovyev, P.H. Deederichs, and V.I. Anisimov, Phys. Rev. B 50, 16861 (1994).

    Article  CAS  Google Scholar 

  27. C.Y. Li, P. Li, L.Y. Li, D.J. Wang, X.F. Gao, and X.J. Gao, RSC Adv. 11, 21851 (2021).

    Article  CAS  Google Scholar 

  28. M.B. Kanoun, S. Goumri-Said, U. Schwingenshchlögl, and A. Manchon, Chem. Phys. Lett. 532, 96 (2012).

    Article  CAS  Google Scholar 

  29. B.Y. Ao, Z.J. Zhang, T. Tang, and Y.P. Zhao, Solid State Commun. 204, 23 (2015).

    Article  CAS  Google Scholar 

  30. H.J. Monkhorst, and J.D. Pack, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  31. J.D. Donaldson, J. Silver, S. Hadjiminolis, and S.D. Ross, J. Chem. Soc., Dalton Trans. 15, 1500 (1975).

    Article  Google Scholar 

  32. L.X. Long, D. Cao, J.P. Fei, J.F. Wang, Y. Zhou, Z.T. Jiang, Z.W. Jiao, and H.B. Shu, Chem. Phys. Lett. 734, 136719 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY22A040002 and LZ22F040003), the National Natural Science Foundation of China (Grant No. 62174151 and 21873087), National College Student Innovation and Entrepreneurship Training Program (Grant No. 202010356042), Graduate Research and Innovation project of Zhejiang (Grant No. 2021R409023)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Cao.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, F., Yao, Y., Cao, D. et al. Structural Stability and Optoelectronic Properties of Lead-Free Halide Perovskite CsSnBr3 by Introducing Transition-Metal Dopants. J. Electron. Mater. 51, 3438–3444 (2022). https://doi.org/10.1007/s11664-022-09609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09609-4

Keywords

Navigation