Log in

Numerical simulation of the stationary shoulder friction stir welding of Ti-6Al-4V

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of stationary shoulder friction stir welding (SSFSW) on temperature gradient and material flow was investigated to optimize the SSFSW process. A three-dimensional numerical model of heat generation and material flow was established by using computational fluid dynamics, and thermo-physical phenomena of SSFSWed Ti-6Al-4V were quantitatively analyzed in terms of heat generation, heat transfer, material flow and viscosity. The temperature gradient was more uniform in a narrow stir zone produced by the SSFSW process. The distribution of velocity was studied, and instantaneous velocity center of tool was divided into two different velocity regions to study the material flow. The simulation results were verified by experimental thermal cycles of calculated position of model, which was in accordance with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Fratini L, Buffa G (2005) CDRX modelling in friction stir welding of aluminum alloys. Int J Mach Tools Manuf 45:1188–1194. https://doi.org/10.1016/j.ijmachtools.2004.12.001

    Article  Google Scholar 

  2. Banerjee D, Williams JC (2013) Perspectives on titanium science and technology. Acta Mater 61:844–879. https://doi.org/10.1016/j.actamat.2012.10.043

    Article  CAS  Google Scholar 

  3. Liu H, Fujii H, Maeda M, Nogi K (2003) Tensile properties and fracture locations of friction-stir welded joints of 6061–T6 aluminum alloy. J Mater Sci Lett 22:1061–1063. https://doi.org/10.1023/A:1024970421082

    Article  CAS  Google Scholar 

  4. He X, Gu F, Ball A (2014) A review of numerical analysis of friction stir welding. Prog Mater Sci 65:1–66. https://doi.org/10.1016/j.pmatsci.2014.03.003

    Article  Google Scholar 

  5. Meng X, Huang Y, Cao J, Shen J, dos Santos JF (2021) Recent progress on control strategies for inherent issues in friction stir welding. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2020.100706

    Article  Google Scholar 

  6. Zhou L, Liu HJ, Liu QW (2010) Effect of rotation speed on microstructure and mechanical properties of Ti-6Al-4V friction stir welded joints. Mater Des 31:2631–2636. https://doi.org/10.1016/j.matdes.2009.12.014

    Article  CAS  Google Scholar 

  7. Zhou L, Liu HJ, Liu QW (2010) Effect of process parameters on stir zone microstructure in Ti-6Al-4V friction stir welds. J Mater Sci 45:39–45. https://doi.org/10.1007/s10853-009-3881-1

    Article  CAS  Google Scholar 

  8. Zhou L, Liu HJ, Liu P, Liu QW (2009) The stir zone microstructure and its formation mechanism in Ti–6Al–4V friction stir welds. Scripta Mater 61:596–599. https://doi.org/10.1016/j.scriptamat.2009.05.029

    Article  CAS  Google Scholar 

  9. Jiang X, Wynne BP, Martin J (2018) Variant selection in stationary shoulder friction stir welded Ti-6Al-4V alloy. J Mater Sci Technol 34:198–208. https://doi.org/10.1016/j.jmst.2017.11.024

    Article  CAS  Google Scholar 

  10. Jiang X, Wynne BP, Martin J (2015) Microstructure and texture evolution of stationary shoulder friction stir welded Ti6Al4V alloy. Sci Technol Weld Joining 20:594–600. https://doi.org/10.1179/1362171815y.0000000043

    Article  CAS  Google Scholar 

  11. Davies PS, Wynne BP, Rainforth WM, Thomas MJ, Threadgill PL (2011) Development of microstructure and crystallographic texture during stationary shoulder friction stir welding of Ti-6Al-4V. Metall Mater Trans A-Phys Metall Mater Sci 42A:2278–2289. https://doi.org/10.1007/s11661-011-0606-2

    Article  CAS  Google Scholar 

  12. Bai Y, Jiang X, Chen S, Jiang W, Han Y, Yuan T, Wang X (2021) Microstructure and properties of electrically assisted stationary shoulder friction stir welded Ti6Al4V. Sci Technol Weld Joining 26:377–388. https://doi.org/10.1080/13621718.2021.1923441

    Article  CAS  Google Scholar 

  13. Li D, Yang X, Cui L, He F, Zhang X (2015) Investigation of stationary shoulder friction stir welding of aluminum alloy 7075–T651. J Mater Process Technol 222:391–398. https://doi.org/10.1016/j.jmatprotec.2015.03.036

    Article  CAS  Google Scholar 

  14. Sun GD, Zhou L, Liu YN, Yang HF, Jiang JT, Li GA (2022) Microstructure characterization and evaluation of mechanical properties in 2A97 aluminum-lithium alloys welded by stationary shoulder friction stir welding. J Market Res 16:416–432. https://doi.org/10.1016/j.jmrt.2021.12.004

    Article  CAS  Google Scholar 

  15. Buffa G, Fratini L, Impero F, Masnata A, Scherillo F, Squillace A (2020) Surface and mechanical characterization of stationary shoulder friction stir welded lap joints: experimental and numerical approach. IntJ Mater Form 13:725–736. https://doi.org/10.1007/s12289-020-01574-9

    Article  Google Scholar 

  16. Iqbal MP, Tripathi A, Jain R, Mahto RP, Pal SK, Mandal P (2020) Numerical modelling of microstructure in friction stir welding of aluminum alloys. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2020.105882

    Article  Google Scholar 

  17. Chen GQ, Feng ZL, Chen J, Liu L, Li H, Liu Q, Zhang S, Cao X, Zhang G, Shi QY (2017) Analytical approach for describing the collapse of surface asperities under compressive stress during rapid solid state bonding. Scripta Mater 128:41–44. https://doi.org/10.1016/j.scriptamat.2016.10.015

    Article  CAS  Google Scholar 

  18. Chen G, Ma Q, Zhang S, Wu J, Zhang G, Shi Q (2018) Computational fluid dynamics simulation of friction stir welding: a comparative study on different frictional boundary conditions. J Mater Sci Technol 34:128–134. https://doi.org/10.1016/j.jmst.2017.10.015

    Article  CAS  Google Scholar 

  19. Wang X, Gao Y, Liu X, McDonnell M, Feng Z (2021) Tool-workpiece stick-slip conditions and their effects on torque and heat generation rate in the friction stir welding. Acta Mater. https://doi.org/10.1016/j.actamat.2021.116969

    Article  Google Scholar 

  20. Chen S, Han Y, Jiang X, Li X, Yuan T, Jiang W, Wang X (2021) Study on in-situ material flow behavior during friction stir welding via a novel material tracing technology. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2021.117205

    Article  Google Scholar 

  21. Ulysse P (2002) Three-dimensional modeling of the friction stir-welding process. Int J Mach Tools Manuf 42:1549–1557. https://doi.org/10.1016/s0890-6955(02)00114-1

    Article  Google Scholar 

  22. Colegrove PA, Shercliff HR (2003) Experimental and numerical analysis of aluminum alloy 7075–T7351 friction stir welds. Sci Technol Weld Joining 8:360–368. https://doi.org/10.1179/136217103225005534

    Article  CAS  Google Scholar 

  23. Nandan R, DebRoy T, Bhadeshia H (2008) Recent advances in friction-stir welding - process, weldment structure and properties. Prog Mater Sci 53:980–1023. https://doi.org/10.1016/j.pmatsci.2008.05.001

    Article  CAS  Google Scholar 

  24. Nandan R, Lienert TJ, DebRoy T (2008) Toward reliable calculations of heat and plastic flow during friction stir welding of Ti-6Al-4V alloy. Int J Mater Res 99:434–444. https://doi.org/10.3139/146.101655

    Article  CAS  Google Scholar 

  25. Wu CS, Su H, Shi L (2018) Numerical simulation of heat generation, heat transfer and material flow in friction stir welding. Acta Metall Sin 54:265–277. https://doi.org/10.11900/0412.1961.2017.00294

    Article  CAS  Google Scholar 

  26. Shi L, Chen J, Wu CS, Fu L (2021) Analysis of heat and mass transfer in ultrasonic vibration-enhanced friction stir welding of 2195 Al–Li alloy. Sci Technol Weld Joining 26:363–370. https://doi.org/10.1080/13621718.2021.1917748

    Article  CAS  Google Scholar 

  27. Su H, Wang T, Wu C (2021) Formation of the periodic material flow behavior in friction stir welding. Sci Technol Weld Joining 26:286–293. https://doi.org/10.1080/13621718.2021.1902605

    Article  CAS  Google Scholar 

  28. Zhao W, Wu C, Su H (2020) Numerical investigation of heat generation and plastic deformation in ultrasonic assisted friction stir welding. J Manuf Process 56:967–980. https://doi.org/10.1016/j.jmapro.2020.05.047

    Article  Google Scholar 

  29. Yang C, Wu C, Shi L (2020) Modeling the dissimilar material flow and mixing in friction stir welding of aluminum to magnesium alloys. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.156021

    Article  Google Scholar 

  30. Su Y, Li W, Liu X, Gao F, Yu Y, Vairis A (2020) Strengthening mechanism of friction stir welded alpha titanium alloy specially designed T-joints. J Manuf Process 55:1–12. https://doi.org/10.1016/j.jmapro.2020.03.032

    Article  Google Scholar 

  31. Penalva ML, Otaegi A, Pujana J, Rivero A (2009) Development of a new joint geometry for FSW, 3rd manufacturing-engineering-society international conference (MESIC 2009), Alcoy, Spain, pp 1–11

  32. He W, Liu J, Hu W, Wang G, Chen W (2019) Controlling residual stress and distortion of friction stir welding joint by external stationary shoulder. High Temp Mater Process 38:662–671. https://doi.org/10.1515/htmp-2019-0005

    Article  CAS  Google Scholar 

  33. Su Y, Li W, Patel V, Vairis A, Wang F (2019) Formability of an AA5083 aluminum alloy T-joint using SSFSW on both corners. Mater Manuf Process 34:1737–1744. https://doi.org/10.1080/10426914.2019.1669799

    Article  CAS  Google Scholar 

  34. Yang H, Zhao H, Xu X, Zhou L, Zhao H, Liu H (2021) Effect of stirring pin rotation speed on microstructure and mechanical properties of 2A14-T4 alloy T-joints produced by stationary shoulder friction stir welding. Materials. https://doi.org/10.3390/ma14081938

    Article  Google Scholar 

  35. Silva YC, Oliveira Júnior FJV, Marcondes F, Silva CC (2020) Analysis of viscosity function models used in friction stir welding. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-020-02504-1

    Article  Google Scholar 

  36. Cho HH, Hong ST, Roh JH, Choi HS, Kang SH, Steel RJ, Han HN (2013) Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel. Acta Mater 61:2649–2661. https://doi.org/10.1016/j.actamat.2013.01.045

    Article  CAS  Google Scholar 

  37. Nandan R, Roy GG, Debroy T (2006) Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metall Mater Trans A-Phys Metall Mater Sci 37A:1247–1259. https://doi.org/10.1007/s11661-006-1076-9

    Article  CAS  Google Scholar 

  38. Sheppard T, Wright DS (1979) Determination of flow-stress.1. constitutive equation for aluminum-alloys at elevated-temperatures. Metals Technol 6:215–223. https://doi.org/10.1179/030716979803276264

    Article  CAS  Google Scholar 

  39. Bruschi S, Poggio S, Quadrini F, Tata ME (2004) Workability of Ti–6Al–4V alloy at high temperatures and strain rates. Mater Lett 58:3622–3629. https://doi.org/10.1016/j.matlet.2004.06.058

    Article  CAS  Google Scholar 

  40. Yu ZZ, Zhang W, Choo H, Feng ZL (2012) Transient heat and material flow modeling of friction stir processing of magnesium alloy using threaded tool. Metall Mater Trans A-Phys Metall Mater Sci 43A:724–737. https://doi.org/10.1007/s11661-011-0862-1

    Article  CAS  Google Scholar 

  41. Shi L, Wu CS, Padhy GK, Gao S (2016) Numerical simulation of ultrasonic field and its acoustoplastic influence on friction stir welding. Mater Des 104:102–115. https://doi.org/10.1016/j.matdes.2016.05.001

    Article  Google Scholar 

  42. Huang Y, **e Y, Meng X, Lv Z, Cao J (2018) Numerical design of high depth-to-width ratio friction stir welding. J Mater Process Technol 252:233–241. https://doi.org/10.1016/j.jmatprotec.2017.09.029

    Article  Google Scholar 

  43. Huang Y, **e Y, Meng X, Li J, Zhou L (2019) Joint formation mechanism of high depth-to-width ratio friction stir welding. J Mater Sci Technol 35:1261–1269. https://doi.org/10.1016/j.jmst.2019.01.016

    Article  Google Scholar 

  44. Jiang W, Jiang XQ, Yuan T, Chen SJ, Liu YY, Liu XS (2022) Material flow and viscous slips during stationary shoulder friction stir welding of Ti6Al4V. Sci Technol Weld Join 27:220–227. https://doi.org/10.1080/13621718.2022.2036573

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No. 51604015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Tao.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**aoqing, J., Wang, J., Tao, Y. et al. Numerical simulation of the stationary shoulder friction stir welding of Ti-6Al-4V. J Mater Sci 57, 7367–7383 (2022). https://doi.org/10.1007/s10853-022-07116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07116-9

Navigation