Log in

Simulation and Experimental Analysis of Double Rotating Shoulder Friction Stir Welding

  • Review Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, a new Double Rotating Shoulder (DRS) tool is designed to create a preheating effect and promote material flow in the shoulder-affected area during friction stir welding (FSW). A comparative study of the temperature field, strain field and material flow of AA 6061 aluminium alloy during FSW using a DRS tool and a conventional tool was carried out using numerical simulation. The model was verified according to the actual temperature field in both cases. Further, the macroscopic morphology and mechanical properties of both joints were investigated. The results showed that the simulated temperature field during FSW using a DRS tool has a good correlation with the actual temperature field. The DRS tool does lead to different macroscopic profiles but has almost no impact on mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Thomas W M, Nicholas E D, Needham J C, Murch M G, Temple-Smith P, and Dawes C J, International patent number PCT/GB92/02203 and GB patent application number 9125978.9 (1991)

  2. Mishra R S, and Ma Z Y, Mat Sci Eng R 50 (2005) 1. https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  3. Kayode O, and Akinlabi E T, Mater Res Express 6 (2019) 112005. https://doi.org/10.1088/2053-1591/ab3262

    Article  Google Scholar 

  4. Cao F, Huang G, Hou W, Ni R, Sun T, Hu J, Shen Y, and Gerlich A P, J Mater Process Technol 307 (2022) 117660. https://doi.org/10.1016/j.jmatprotec.2022.117660

    Article  CAS  Google Scholar 

  5. Cao F, Sun T, Hu J, Hou W, Huang G, Shen Y, Ma N, Geng P, Hu W, and Qu X, Mater Des 225 (2023) 111492. https://doi.org/10.1016/j.jmatdes.2022.111492

    Article  CAS  Google Scholar 

  6. Fei X, ** X, Ye Y, **u T, and Yang H, Mater Sci Eng A 653 (2016) 43. https://doi.org/10.1016/j.msea.2015.11.101

    Article  CAS  Google Scholar 

  7. Yaduwanshi D K, Bag S, and Pal S, Mater Des 92 (2016) 166. https://doi.org/10.1016/j.matdes.2015.12.039

    Article  CAS  Google Scholar 

  8. Kaushik P, and Dwivedi D K, Mater Today 46 (2021) 1091. https://doi.org/10.1016/j.matpr.2021.01.438

    Article  CAS  Google Scholar 

  9. Li J Q, and Liu H J, Int J Adv Manuf Technol 66 (2013) 623. https://doi.org/10.1007/s00170-012-4353-3

    Article  Google Scholar 

  10. Widener C A, Talia J E, Tweedy B M, and Burford D A, High-rotational speed friction stir welding with a fixed shoulder, Proceedings of the 6th International Symposium on Friction Stir Welding, Montreal (2006)

  11. Li J Q, and Liu H J, Mater Des 43 (2013) 299. https://doi.org/10.1016/j.matdes.2012.07.011

    Article  CAS  Google Scholar 

  12. Li J Q, Liu H J, and Duan W J, Int J Adv Manuf Tech 64 (2013) 1685. https://doi.org/10.1007/s00170-012-4132-1

    Article  Google Scholar 

  13. Barbini A, Carstensen J, and dos Santos J F, J Mater Sci Technol 34 (2018) 119. https://doi.org/10.1016/j.mst.2017.10.017

    Article  Google Scholar 

  14. Sinhmar S, and Dwivedi D K, J Mater Process Technol 277 (2020) 116482. https://doi.org/10.1016/j.jmatprotec.2019.116482

    Article  CAS  Google Scholar 

  15. Saravana Sundar A, Kar A, Mugada K K, and Kumar A, Mater Charact 203 (2023) 113148. https://doi.org/10.1016/j.matchar.2023.113148

    Article  CAS  Google Scholar 

  16. Thomas W M, Threadgill P L, and Nicholas E D, Sci Technol Weld Join 4 (1999) 365.

    Article  CAS  Google Scholar 

  17. Mitsuo H, Friction agitation joining method and Frictional Agitation joining device’ Patent Abstracts of Japan, Publication number 2000-094156, Date of publication of application 04.04.2000

  18. Thomas W M, Braithwaite A B M, and John R, Skew-Stir™ Technology, Proceedings of the 3rd International Symposium on Friction Stir Welding, Port Island, Japan (2001)

  19. Thomas W M, Norris I M, Smith I J, and Staines D G, Reversal stir welding—Re-stir™—feasibility study, Proceedings of the 4th International Symposium on Friction Stir Welding, Park City, Utah, USA (2003)

  20. Thomas W M, Norris I M, Staines D G, and Watts E R, Friction stir welding—process Developments and Variant Techniques, The SME Summit, Oconomowoc, Milwaukee, WI (2005)

  21. Kumari K, Pal S K, and Singh S B, J Mater Process Technol 215 (2015) 132. https://doi.org/10.1016/j.jmatprotec.2014.07.031

    Article  Google Scholar 

  22. Jaina R, Kumari K, Pal S K, and Singh S B, J Mater Process Technol 255 (2018) 121. https://doi.org/10.1016/j.jmatprotec.2017.11.043

    Article  Google Scholar 

  23. Zhao P-F, Ren G-S, Guang-Sheng, Xu C-G, and Shen Z, J Plast Eng 04 (2006) 79.

    Google Scholar 

  24. Zhang Y, Cao X, Larose S, and Wanjara P, Can Metall Q 51 (2012) 250.

    Article  CAS  Google Scholar 

  25. Li J Q, and Liu H J, J Mater Sci Technol 31 (2015) 375e383. https://doi.org/10.1016/j.jmst.2014.07.020

    Article  CAS  Google Scholar 

  26. Kwang-** L, and Eui-Pyo K, Trans Nonferrous Met Soc China 24 (2014) 2374. https://doi.org/10.1016/S1003-6326(14)63359-8

    Article  CAS  Google Scholar 

  27. Moreira P M G P, Santos T, Tavares S M O, Richter-Trummer V, Vilaça P, and de Castro P P M S T, Mater Des 30 (2009) 180. https://doi.org/10.1016/j.matdes.2008.04.042

    Article  CAS  Google Scholar 

  28. Jamshidi Aval H, Serajzadeh S, and Kokabi A H, Mater Sci Eng A 528 (2011) 8071. https://doi.org/10.1016/j.msea.2011.07.056

    Article  CAS  Google Scholar 

  29. Chen Y, Hu H, Huang C, Friction stir welding technology, CHINA MACHINE PRESS, May 2018, (2018), p 62, Paperback ISBN: 9787111595458, https://www.cmpbook.com

Download references

Acknowledgements

All authors were involved in the study conceptualization and design, all commented on previous versions of the manuscript, and all authors read and approved the final manuscript. Tao Sun contributed to methodology, investigation and reviewing; Zhenkui liang helped in sample testing; Yongqi Yang helped in reviewing and editing; **aomei Feng done resources and editing; Yifu Shen helped in funding acquisition, resources and supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifu Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Sun, T., Liang, Z. et al. Simulation and Experimental Analysis of Double Rotating Shoulder Friction Stir Welding. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03356-2

Keywords

Navigation