Log in

A review on extrusion-based 3D-printed nanogenerators for energy harvesting

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Energy harvesting technologies now play a significant role in the successful deployment of self-powered electronic devices. Researchers are working on small-scale energy generators fabricated with nanomaterials to harvest ambient energy. Triboelectric nanogenerator (TENG) is an efficient method for harvesting mechanical energy and powering battery-less tiny devices for wearable, implantable medical sensing and internet of things (IoT) sensing applications. So far, many fabrication technologies have been discussed in the literature for the fabrication of TENG including traditional micro/nano-fabrication technologies and 3D printing or additive manufacturing technologies. Extrusion-based 3D printing is a reliable approach for develo** a fast, economical and controllable TENG device. This article provides a detailed analysis of recently used material combinations, design and structure formation, and output performance of extrusion-based 3D-printed triboelectric nanogenerators (EB-3DP-TENGs). Also, it presents their latest applications, including powering of electronic devices, silent speech recognition, voice print sensing and gait monitoring. Moreover, it discusses the crucial challenges and approaches used to enhance the performance efficiency of EB-3DP-TENGs. Finally, a visionary roadmap for the future development of EB-3DP-TENGs is provided, which will accelerate research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Copyright 2019, Elsevier B.V. b DIW printers for fabricating silicon rubber for triboelectric layer. Reproduced with permission [89] Copyright 2019, Elsevier B.V. c Printing setup of soft and flexible TENG. Reproduced with permission. [42] Copyright 2020, Elsevier B.V. d Fabricating elastomeric metal-core and silicone-cu fibres using DIW. Reproduced with permission [90] Copyright 2020, Elsevier B.V. e TENG fabrication used for the voiceprint recognition. Reproduced with permission. [91] Copyright 2020, Elsevier B.V. f Experimental setup to develop EB-3DP hierarchical porous structure. Reproduced with permission [92] Copyright 2018, Elsevier B.V

Figure 8

Copyright 2019, Elsevier B.V. (b) (d) (e) Fabrication of wrinkle shaped silicon elastomer. Reproduced with permission [89] Copyright 2019, Elsevier B.V. (f) Hollow structure of DIW-TENG for figure bending monitoring. Reproduced with permission [92] Copyright 2018, Elsevier B.V. (g) Fabrication of hollow cylindrical structure using DIW. Reproduced with permission [90] Copyright 2020, Elsevier B.V. (h) Matrix patterned based DIW fabrication of tactile sensor. Reproduced with permission [42] Copyright 2020, Elsevier B.V

Figure 9
Figure 10

Copyright 2019, Elsevier B.V. (d) (f) Fabrication process and design illustration of FDM-TENG. Reproduced with permission [104] Copyright 2019, Elsevier B.V. (e) Schematic of printing setup for fabricating IBTENG and the scanning electron microscopy images of PA/Lignin film. Reproduced with permission [105] Copyright 2020, Elsevier B.V. (g) Process of fabricating FDM-TENG by using polymer pipe-carried mixed 3D printing method. Reproduced with permission [100] Copyright 2018, Elsevier B.V

Figure 11

Copyright 2018, Elsevier B.V. c Schematic illustrating of fan shape CR-TENG structure. Reproduced with permission [101] Copyright 2017, Elsevier B.V. d Photographs of FDM-TENG with folding units displaying bending properties. Reproduced with permission [25] Copyright 2019, Elsevier B.V. e Images of spring and core oscillator of FDM-TENG made up of black and white PLA. Reproduced with permission [108] Copyright 2018, Elsevier B.V. f Schematic diagrams of the fabrication process for the cylinder-shaped FDM-TENG, consisting of body and base parts, and PDMS balls. Reproduced with permission [102] Copyright 2017, Elsevier B.V g Structure of the grating disk type FDM-TENG. Reproduced with permission [99] Copyright 2018, Elsevier B.V

Figure 12

Copyright 2019, Elsevier B.V. (b) (c) Reproduced with permission [102] Copyright 2017, Elsevier B.V. (f) (g) Reproduced with permission [90] Copyright 2020, Elsevier B.V Reproduced with permission [99] Copyright 2018, Elsevier B.V. (e) (h) Reproduced with permission [106] Copyright, RCS 2016 (i) Reproduced with permission. [91] Copyright 2020, Elsevier B.V

Figure 13
Figure 14

Similar content being viewed by others

References

  1. Cao S, Li J (2017) A survey on ambient energy sources and harvesting methods for structural health monitoring applications. Adv Mech Eng 9(4):109–153. https://doi.org/10.1177/1687814017696210

    Article  Google Scholar 

  2. Fan F-R, Tian Z-Q, Lin Wang Z (2012) Flexible triboelectric generator. Nano Energy 1(2):328–334. https://doi.org/10.1016/j.nanoen.2012.01.004

    Article  CAS  Google Scholar 

  3. Wu C, Wang AC, Ding W, Guo H, Wang ZL (2019) Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater 9(1):1802906. https://doi.org/10.1002/aenm.201802906

    Article  CAS  Google Scholar 

  4. Qiao H, Zhang Y, Huang Z, Wang Y, Li D, Zhou H (2018) 3D printing individualized triboelectric nanogenerator with macro-pattern. Nano Energy 50:126–132. https://doi.org/10.1016/J.NANOEN.2018.04.071

    Article  CAS  Google Scholar 

  5. Niu S et al (2013) Theory of sliding-mode triboelectric nanogenerators. Adv Mater 25(43):6184–6193. https://doi.org/10.1002/adma.201302808

    Article  CAS  Google Scholar 

  6. Kaur N, Bahadur J, Panwar V, Singh P, Rathi K, Pal K (2016) Effective energy harvesting from a single electrode based triboelectric nanogenerator. Sci Rep 6(1):38835. https://doi.org/10.1038/srep38835

    Article  CAS  Google Scholar 

  7. Wang ZL, Lin L, Chen J, Niu S, Zi Y (2016) Freestanding triboelectric-layer mode. Triboelectric nanogenerator. Springer International Publishing, pp. 109–153. https://doi.org/10.1007/978-3-319-40039-6_5

  8. Fan X, Chen J, Yang J, Bai P, Li Z, Wang ZL (2015) Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 9(4):4236–4243. https://doi.org/10.1021/acsnano.5b00618

    Article  CAS  Google Scholar 

  9. Park K-I et al (2012) Flexible Nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24(22):2999–3004. https://doi.org/10.1002/adma.201200105

    Article  CAS  Google Scholar 

  10. Pan R et al (2018) Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 45:193–202. https://doi.org/10.1016/j.nanoen.2017.12.048

    Article  CAS  Google Scholar 

  11. Zhou X, Lee PS (2021) Three-dimensional printing of tactile sensors for soft robotics. MRS Bull 46(4):330–336. https://doi.org/10.1557/s43577-021-00079-3

    Article  Google Scholar 

  12. Zhu Y, Tian M, Chen Y, Yang Y, Liu X, Gao S (2021) 3D printed triboelectric nanogenerator self-powered electro-Fenton degradation of orange IV and crystal violet system using N-doped biomass carbon catalyst with tunable catalytic activity. Nano Energy 83:105824. https://doi.org/10.1016/j.nanoen.2021.105824

    Article  CAS  Google Scholar 

  13. Zhu Y, Chen C, Tian M, Chen Y, Yang Y, Gao S (2021) Self-powered electro-Fenton degradation system using oxygen-containing functional groups-rich biomass-derived carbon catalyst driven by 3D printed flexible triboelectric nanogenerator. Nano Energy 83:105720. https://doi.org/10.1016/j.nanoen.2020.105720

    Article  CAS  Google Scholar 

  14. Yamomo G, Hossain N, Towfighian S, Willing R (2021) Design and analysis of a compliant 3D printed energy harvester housing for knee implants. Med Eng Phys 88:59–68. https://doi.org/10.1016/j.medengphy.2020.12.008

    Article  Google Scholar 

  15. Zhang SL et al (2020) Electromagnetic pulse powered by a triboelectric nanogenerator with applications in accurate self-powered sensing and security. Adv Mater Technol 5(10):2000368. https://doi.org/10.1002/admt.202000368

    Article  CAS  Google Scholar 

  16. Wang Z, Zhang F, Li N, Yao T, Lv D, Cao G (2020) Self-Powered multifunctional triboelectric sensor based on PTFE/PU for linear, rotary, and vibration motion sensing. Adv Mater Technol 5(7):2000159. https://doi.org/10.1002/admt.202000159

    Article  CAS  Google Scholar 

  17. Bhatta T, Maharjan P, Park JY (2019) All-direction in-plane magnetic repulsion-based self-powered arbitrary motion sensor and hybrid nanogenerator. In: 2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), Dec. 2019, pp. 1–4, doi: https://doi.org/10.1109/PowerMEMS49317.2019.71805302807

  18. Yuan X et al (2020) The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvester. Energy Environ Sci 13(1):152–161. https://doi.org/10.1039/C9EE01785B

    Article  CAS  Google Scholar 

  19. Yuan M, Li C, Liu H, Xu Q, **e Y (2021) A 3D-printed acoustic triboelectric nanogenerator for quarter-wavelength acoustic energy harvesting and self-powered edge sensing. Nano Energy 85:105962. https://doi.org/10.1016/j.nanoen.2021.105962

    Article  CAS  Google Scholar 

  20. Rafiee M, Farahani RD, Therriault D (2020) Multi-material 3D and 4D printing: a survey. Adv Sci 7(12):1902307. https://doi.org/10.1002/advs.201902307

    Article  CAS  Google Scholar 

  21. Zhang Y et al (2019) Recent progress of direct ink writing of electronic components for advanced wearable devices. ACS Appl Electron Mater 1(9):1718–1734. https://doi.org/10.1021/acsaelm.9b00428

    Article  CAS  Google Scholar 

  22. Chen Y et al (2021) 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy 84:105866. https://doi.org/10.1016/j.nanoen.2021.105866

    Article  CAS  Google Scholar 

  23. Chen B et al (2018) Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy 45:380–389. https://doi.org/10.1016/j.nanoen.2017.12.049

    Article  CAS  Google Scholar 

  24. Lee Y, Kim W, Bhatia D, Hwang HJ, Lee S, Choi D (2017) Cam-based sustainable triboelectric nanogenerators with a resolution-free 3D-printed system. Nano Energy 38:326–334. https://doi.org/10.1016/j.nanoen.2017.06.015

    Article  CAS  Google Scholar 

  25. Gao S et al (2019) Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators. Mater Today 28:17–24. https://doi.org/10.1016/j.mattod.2019.05.004

    Article  CAS  Google Scholar 

  26. Wang J et al (2018) Flexure hinges based triboelectric nanogenerator by 3D printing. Extrem Mech Lett 20:38–45. https://doi.org/10.1016/j.eml.2018.01.002

    Article  Google Scholar 

  27. Liu G et al (2021) One-stop fabrication of triboelectric nanogenerator based on 3D printing. Eco Mat. https://doi.org/10.1002/eom2.12130

    Article  Google Scholar 

  28. Niu S, Wang ZL (2015) Theoretical systems of triboelectric nanogenerators. Nano Energy 14:161–192. https://doi.org/10.1016/j.nanoen.2014.11.034

    Article  CAS  Google Scholar 

  29. Zhou C et al (2018) Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res 11(8):4313–4322. https://doi.org/10.1007/s12274-018-2018-8

    Article  CAS  Google Scholar 

  30. Wang S, Lin L, Wang ZL (2015) Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11:436–462. https://doi.org/10.1016/j.nanoen.2014.10.034

    Article  CAS  Google Scholar 

  31. Yi F, Zhang Z, Kang Z, Liao Q, Zhang Y (2019) Recent advances in triboelectric nanogenerator-based health monitoring. Adv Funct Mater 29(41):1808849. https://doi.org/10.1002/adfm.201808849

    Article  CAS  Google Scholar 

  32. Pan S, Zhang Z (2019) Fundamental theories and basic principles of triboelectric effect: a review. Friction 7(1):2–17. https://doi.org/10.1007/s40544-018-0217-7

    Article  Google Scholar 

  33. Zhu J et al (2020) Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem. EcoMat 2(4):e12058. https://doi.org/10.1002/eom2.12058

    Article  CAS  Google Scholar 

  34. Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16(17):2193–2204. https://doi.org/10.1002/adfm.200600434

    Article  CAS  Google Scholar 

  35. Nguyen VH, Huynh TN, Nguyen TP, Tran TT (2020) Single and multi-objective optimization of processing parameters for fused deposition modeling in 3D printing technology. Int J Automot Mech Eng 17(1):7542–7551. https://doi.org/10.15282/ijame.17.1.2020.03.0558

    Article  Google Scholar 

  36. Mahmud MAP et al (2021) 3D-printed triboelectric nanogenerators: state of the art, applications, and challenges. Adv Energy Sustain Res 2(3):2000045. https://doi.org/10.1002/AESR.202000045

    Article  Google Scholar 

  37. Zhou X, Lee PS (2021) Three dimensional printed nanogenerators. Eco Mat. https://doi.org/10.1002/eom2.12098

    Article  Google Scholar 

  38. Chen B, Tang W, Wang ZL (2021) Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing. Mater Today 1(1):1. https://doi.org/10.1016/j.mattod.2021.05.017

    Article  CAS  Google Scholar 

  39. Cai N, Sun P, Jiang S (2021) Rapid prototy** and customizable multifunctional structures: 3D-printing technology promotes the rapid development of TENGs. J Mater Chem A 9(30):16255–16280. https://doi.org/10.1039/D1TA04092H

    Article  CAS  Google Scholar 

  40. Zheng R, Chen Y, Chi H, Qiu H, Xue H, Bai H (2020) 3D printing of a polydimethylsiloxane/polytetrafluoroethylene composite elastomer and its application in a triboelectric nanogenerator. ACS Appl Mater Interfaces 12(51):57441–57449. https://doi.org/10.1021/acsami.0c18201

    Article  CAS  Google Scholar 

  41. Yoon H-J et al (2019) 3D-printed biomimetic-villus structure with maximized surface area for triboelectric nanogenerator and dust filter. Nano Energy 63:103857. https://doi.org/10.1016/j.nanoen.2019.103857

    Article  CAS  Google Scholar 

  42. Li H et al (2020) All-printed soft triboelectric nanogenerator for energy harvesting and tactile sensing. Nano Energy 78:105288. https://doi.org/10.1016/j.nanoen.2020.105288

    Article  CAS  Google Scholar 

  43. Hong D, Choi Y-M, Jang Y, Jeong J (2018) A multilayer thin-film screen-printed triboelectric nanogenerator. Int J Energy Res 42(11):3688–3695. https://doi.org/10.1002/er.4092

    Article  CAS  Google Scholar 

  44. Jang D, Kim Y, Kim TY, Koh K, Jeong U, Cho J (2016) Force-assembled triboelectric nanogenerator with high-humidity-resistant electricity generation using hierarchical surface morphology. Nano Energy 20:283–293. https://doi.org/10.1016/j.nanoen.2015.12.021

    Article  CAS  Google Scholar 

  45. Qian C et al (2019) All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy 63:103885. https://doi.org/10.1016/J.NANOEN.2019.103885

    Article  CAS  Google Scholar 

  46. Zou Y, Xu J, Chen K, Chen J (2021) Advances in nanostructures for high-performance triboelectric nanogenerators. Adv Mater Technol 6(3):2000916. https://doi.org/10.1002/admt.202000916

    Article  CAS  Google Scholar 

  47. Tao K et al (2021) Hierarchical honeycomb-structured electret/triboelectric nanogenerator for biomechanical and morphing wing energy harvesting. Nano-Micro Lett 13(1):123. https://doi.org/10.1007/s40820-021-00644-0

    Article  CAS  Google Scholar 

  48. Jian G, Meng Q, Jiao Y, Meng F, Cao Y, Wu M (2020) Enhanced performances of triboelectric nanogenerators by filling hierarchical flower-like TiO 2 particles into polymethyl methacrylate film. Nanoscale 12(26):14160–14170. https://doi.org/10.1039/D0NR02925D

    Article  CAS  Google Scholar 

  49. He X et al (2018) A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv Funct Mater 28(45):1805540. https://doi.org/10.1002/adfm.201805540

    Article  CAS  Google Scholar 

  50. Seol M-L, Lee S-H, Han J-W, Kim D, Cho G-H, Choi Y-K (2015) Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 17:63–71. https://doi.org/10.1016/j.nanoen.2015.08.005

    Article  CAS  Google Scholar 

  51. ** Y, Zhang F, Shi Y (2021) Effects of surface micro-structures on capacitances of the dielectric layer in triboelectric nanogenerator: a numerical simulation study. Nano Energy 79:105432. https://doi.org/10.1016/j.nanoen.2020.105432

    Article  CAS  Google Scholar 

  52. Zhang H (2019) Structures of triboelectric nanogenerators. In: Flexible and stretchable triboelectric nanogenerator devices, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019, pp. 19–40. https://doi.org/10.1002/9783527820153.ch2

  53. Jiang T, Chen X, Yang K, Han C, Tang W, Wang ZL (2016) Theoretical study on rotary-sliding disk triboelectric nanogenerators in contact and non-contact modes. Nano Res 9(4):1057–1070. https://doi.org/10.1007/s12274-016-0997-x

    Article  Google Scholar 

  54. Paosangthong W, Wagih M, Torah R, Beeby S (2019) Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy 66:104148. https://doi.org/10.1016/j.nanoen.2019.104148

    Article  CAS  Google Scholar 

  55. Tcho I-W et al (2018) Disk-based triboelectric nanogenerator operated by rotational force converted from linear force by a gear system. Nano Energy 50:489–496. https://doi.org/10.1016/j.nanoen.2018.05.067

    Article  CAS  Google Scholar 

  56. Wang ZL, Lin L, Chen J, Niu S, Zi Y (2016) Triboelectric nanogenerator: lateral sliding mode. Springer, Cham, pp 49–90

    Book  Google Scholar 

  57. Bai P et al (2013) Cylindrical rotating triboelectric nanogenerator. ACS Nano 7(7):6361–6366. https://doi.org/10.1021/nn402491y

    Article  CAS  Google Scholar 

  58. Feng Y, Jiang T, Liang X, An J, Wang ZL (2020) Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl Phys Rev 7(2):021401. https://doi.org/10.1063/1.5135734

    Article  CAS  Google Scholar 

  59. Gao W, Shao J, Sagoe-Crentsil K, Duan W (2021) Investigation on energy efficiency of rolling triboelectric nanogenerator using cylinder-cylindrical shell dynamic model. Nano Energy 80:105583. https://doi.org/10.1016/j.nanoen.2020.105583

    Article  CAS  Google Scholar 

  60. Pang Y et al (2020) Multilayered cylindrical triboelectric nanogenerator to harvest kinetic energy of tree branches for monitoring environment condition and forest fire. Adv Funct Mater 30(32):2003598. https://doi.org/10.1002/adfm.202003598

    Article  CAS  Google Scholar 

  61. Bui V-T, Oh J-H, Kim J-N, Zhou Q, Huynh DP, Oh I-K (2020) Nest-inspired nanosponge-Cu woven mesh hybrid for ultrastable and high-power triboelectric nanogenerator. Nano Energy 71:104561. https://doi.org/10.1016/j.nanoen.2020.104561

    Article  CAS  Google Scholar 

  62. Shankaregowda SA, Nanjegowda CB, Cheng X-L, Shi M-Y, Liu Z-F, Zhang H-X (2016) A flexible and transparent graphene-based triboelectric nanogenerator. IEEE Trans Nanotechnol 15(3):435–441. https://doi.org/10.1109/TNANO.2016.2540958

    Article  CAS  Google Scholar 

  63. Sahu M, Hajra S, Bijelic J, Oh D, Djerdj I, Kim HJ (2021) Triple perovskite-based triboelectric nanogenerator: a facile method of energy harvesting and self-powered information generator. Mater Today Energy 20:100639. https://doi.org/10.1016/j.mtener.2021.100639

    Article  CAS  Google Scholar 

  64. Ma XL (2013) Research on application of SLA technology in the 3D printing technology. In: Applied mechanics and materials, vol 401. Trans Tech Publications Ltd, pp. 938–941. https://doi.org/10.4028/www.scientific.net/AMM.401-403.938

  65. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X (2020) Photo-curing 3D printing technique and its challenges. Bioact Mater 5(1):110–115. https://doi.org/10.1016/j.bioactmat.2019.12.003

    Article  Google Scholar 

  66. Roy NK, Behera D, Dibua OG, Foong CS, Cullinan MA (2019) A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts. Microsystems Nanoeng 5(1):64. https://doi.org/10.1038/s41378-019-0116-8

    Article  CAS  Google Scholar 

  67. Schmid M, Amado A, Wegener K (2015) Polymer powders for selective laser sintering (SLS). AIP Conf Proc 1664(1):160009. https://doi.org/10.1063/1.4918516

    Article  Google Scholar 

  68. Zhang P, Wang Z, Li J, Li X, Cheng L (2020) From materials to devices using fused deposition modeling: a state-of-art review. Nanotechnol Rev 9(1):1594–1609. https://doi.org/10.1515/ntrev-2020-0101

    Article  CAS  Google Scholar 

  69. Diegel O, Singamneni S, Huang B, Gibson I (2011) Curved layer fused deposition modeling in conductive polymer additive manufacturing. Adv Mater Res 199–200:1984–1987

    Article  Google Scholar 

  70. Wang P, Zou B, **ao H, Ding S, Huang C (2019) Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J Mater Process Technol 271:62–74. https://doi.org/10.1016/j.jmatprotec.2019.03.016

    Article  CAS  Google Scholar 

  71. Monzon MD, Diaz N, Benitez AN, Marrero MD, Hernandez PM (2010) Advantages of fused deposition modeling for making electrically conductive plastic patterns. In: 2010 International Conference on Manufacturing Automation, Dec. 2010, pp. 37–43, doi: https://doi.org/10.1109/ICMA.2010.18

  72. Jiang P, Ji Z, Zhang X, Liu Z, Wang X (2018) Recent advances in direct ink writing of electronic components and functional devices. Prog Addit Manuf 3(1–2):65–86. https://doi.org/10.1007/s40964-017-0035-x

    Article  Google Scholar 

  73. Tagliaferri S, Panagiotopoulos A, Mattevi C (2021) Direct ink writing of energy materials. Mater Adv 2(2):540–563. https://doi.org/10.1039/D0MA00753F

    Article  CAS  Google Scholar 

  74. Nan B, Galindo-Rosales FJ, Ferreira JMF (2020) 3D printing vertically: direct ink writing free-standing pillar arrays. Mater Today 35:16–24. https://doi.org/10.1016/j.mattod.2020.01.003

    Article  CAS  Google Scholar 

  75. Finnes T, Letcher T (2015) High definition 3D printing-comparing SLA and FDM printing technologies. J Undergrad Res 13:3

    Google Scholar 

  76. Kumar S (2003) Selective laser sintering: a qualitative and objective approach. JOM 55(10):43–47. https://doi.org/10.1007/s11837-003-0175-y

    Article  CAS  Google Scholar 

  77. Kruth JP, Wang X, Laoui T, Froyen L (2003) Lasers and materials in selective laser sintering. Assem Autom 23(4):357–371. https://doi.org/10.1108/01445150310698652

    Article  Google Scholar 

  78. Yang H, Leow WR, Chen X (2018) 3D printing of flexible electronic devices. Small Methods 2(1):1700259. https://doi.org/10.1002/smtd.201700259

    Article  CAS  Google Scholar 

  79. Mu Q et al (2017) Digital light processing 3D printing of conductive complex structures. Addit Manuf 18:74–83. https://doi.org/10.1016/j.addma.2017.08.011

    Article  CAS  Google Scholar 

  80. Shen J, Ricketts DS (2019) Additive manufacturing of complex millimeter-wave waveguides structures using digital light processing. IEEE Trans Microw Theory Tech 67(3):883–895. https://doi.org/10.1109/TMTT.2018.2889452

    Article  Google Scholar 

  81. Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S (2016) 3D printing of shape memory polymers for flexible electronic devices. Adv Mater 28(22):4449–4454. https://doi.org/10.1002/adma.201503132

    Article  CAS  Google Scholar 

  82. Patel DK, Sakhaei AH, Layani M, Zhang B, Ge Q, Magdassi S (2017) Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv Mater 29(15):1606000. https://doi.org/10.1002/adma.201606000

    Article  CAS  Google Scholar 

  83. Elsayed H et al (2019) Direct ink writing of porous titanium (Ti6Al4V) lattice structures. Mater Sci Eng C 103:109794. https://doi.org/10.1016/j.msec.2019.109794

    Article  CAS  Google Scholar 

  84. Ye B, Song C, Huang H, Li Q, An C, Wang J (2020) Direct ink writing of 3D-Honeycombed CL-20 structures with low critical size. Def Technol 16(3):588–595. https://doi.org/10.1016/j.dt.2019.08.019

    Article  Google Scholar 

  85. Singh R, Singh S, Hashmi MSJ (2016) Implant materials and their processing technologies. In: Reference module in materials science and materials engineering. Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.04156-4

  86. Ahn BY et al (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323(5921):1590–1593. https://doi.org/10.1126/science.1168375

    Article  CAS  Google Scholar 

  87. Kim J, Kumar R, Bandodkar AJ, Wang J (2017) Advanced materials for printed wearable electrochemical devices: a review. Adv Electron Mater 3(1):1600260. https://doi.org/10.1002/aelm.201600260

    Article  CAS  Google Scholar 

  88. Ahmed A et al (2019) All printable snow-based triboelectric nanogenerator. Nano Energy 60:17–25. https://doi.org/10.1016/j.nanoen.2019.03.032

    Article  CAS  Google Scholar 

  89. Li H et al (2019) 3D printed flexible triboelectric nanogenerator with viscoelastic inks for mechanical energy harvesting. Nano Energy 58:447–454. https://doi.org/10.1016/j.nanoen.2019.01.066

    Article  CAS  Google Scholar 

  90. Tong Y, Feng Z, Kim J, Robertson JL, Jia X, Johnson BN (2020) 3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy 75:104973. https://doi.org/10.1016/j.nanoen.2020.104973

    Article  CAS  Google Scholar 

  91. Guo R et al (2020) A voiceprint recognition sensor based on a fully 3D-printed triboelectric nanogenerator via a one-step molding route. Adv Eng Mater 22(5):1901560. https://doi.org/10.1002/adem.201901560

    Article  CAS  Google Scholar 

  92. Chen S et al (2018) A single integrated 3D-printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics. Adv Funct Mater 28(46):1805108. https://doi.org/10.1002/adfm.201805108

    Article  CAS  Google Scholar 

  93. Zou H et al (2019) Quantifying the triboelectric series. Nat Commun 10(1):1427. https://doi.org/10.1038/s41467-019-09461-x

    Article  CAS  Google Scholar 

  94. Li F, Yang Y, Chi Z, Zhao L, Yang Y, Luo J (2018) Trinity. ACM Trans Embed Comput Syst 17(2):1–27. https://doi.org/10.1145/3173039

    Article  CAS  Google Scholar 

  95. Xu Y et al (2017) The boom in 3D-printed sensor technology. Sensors 17(5):1166. https://doi.org/10.3390/s17051166

    Article  Google Scholar 

  96. Shahriar M, Vo CP, Ahn KK (2019) Self-powered flexible pdms channel assisted discrete liquid column motion based triboelectric nanogenerator (DLC-TENG) as mechanical transducer. Int J Precis Eng Manuf Technol 6(5):907–917. https://doi.org/10.1007/s40684-019-00148-8

    Article  Google Scholar 

  97. Tian M et al (2020) Engineering flexible 3D printed triboelectric nanogenerator to self-power electro-Fenton degradation of pollutants. Nano Energy 74:104908. https://doi.org/10.1016/j.nanoen.2020.104908

    Article  CAS  Google Scholar 

  98. Jung S et al (2020) 3D Cu ball-based hybrid triboelectric nanogenerator with non-fullerene organic photovoltaic cells for self-powering indoor electronics. Nano Energy 77:105271. https://doi.org/10.1016/j.nanoen.2020.105271

    Article  CAS  Google Scholar 

  99. Seol M-L et al (2018) All 3D printed energy harvester for autonomous and sustainable resource utilization. Nano Energy 52:271–278. https://doi.org/10.1016/j.nanoen.2018.07.061

    Article  CAS  Google Scholar 

  100. He S et al (2018) Polymer tubes as carrier boats of thermosetting and powder materials based on 3D printing for triboelectric nanogenerator with microstructure. Nano Energy 52(June):134–141. https://doi.org/10.1016/j.nanoen.2018.07.044

    Article  CAS  Google Scholar 

  101. Park S, Ryu H, Park S, Hong H, Jung HY, Park J-J (2017) Rotating triboelectric generator using sliding contact and noncontact from 1D fiber friction. Nano Energy 33:184–194. https://doi.org/10.1016/j.nanoen.2017.01.039

    Article  CAS  Google Scholar 

  102. Lee JP, Ye BU, Kim KN, Lee JW, Choi WJ, Baik JM (2017) 3D printed noise-cancelling triboelectric nanogenerator. Nano Energy 38:377–384. https://doi.org/10.1016/j.nanoen.2017.05.054

    Article  CAS  Google Scholar 

  103. Yang UJ, Lee JW, Lee JP, Baik JM (2019) Remarkable output power enhancement of sliding-mode triboelectric nanogenerator through direct metal-to-metal contact with the ground. Nano Energy 57:293–299. https://doi.org/10.1016/j.nanoen.2018.12.034

    Article  CAS  Google Scholar 

  104. Lee JP et al (2019) Boosting the energy conversion efficiency of a combined triboelectric nanogenerator-capacitor. Nano Energy 56:571–580. https://doi.org/10.1016/j.nanoen.2018.11.076

    Article  CAS  Google Scholar 

  105. Yu Z et al (2020) Rapidly fabricated triboelectric nanogenerator employing insoluble and infusible biomass materials by fused deposition modeling. Nano Energy 68:104382. https://doi.org/10.1016/j.nanoen.2019.104382

    Article  CAS  Google Scholar 

  106. Kim KN, Lee JP, Lee S-H, Lee SC, Baik JM (2016) Ergonomically designed replaceable and multifunctional triboelectric nanogenerator for a uniform contact. RSC Adv 6(91):88526–88530. https://doi.org/10.1039/C6RA17429A

    Article  CAS  Google Scholar 

  107. Cho Y et al (2019) Rotational wind power triboelectric nanogenerator using aerodynamic changes of friction area and the adsorption effect of hematoxylin onto feather based on a diversely evolved hyper-branched structure. Nano Energy 61:370–380. https://doi.org/10.1016/j.nanoen.2019.04.083

    Article  CAS  Google Scholar 

  108. Seol M-L, Han J-W, Moon D-I, Yoon KJ, Hwang CS, Meyyappan M (2018) All-printed triboelectric nanogenerator. Nano Energy 44:82–88. https://doi.org/10.1016/j.nanoen.2017.11.067

    Article  CAS  Google Scholar 

  109. Kang X, Pan C, Chen Y, Pu X (2020) Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer. RSC Adv 10(30):17752–17759. https://doi.org/10.1039/D0RA02181D

    Article  CAS  Google Scholar 

  110. Gomes A, Rodrigues C, Pereira AM, Ventura J (2018) Influence of thickness and contact area on the performance of PDMS-based triboelectric nanogenerators. Mar. 2018, Accessed: Sep. 15, 2021. [Online]. Available: https://arxiv.org/abs/1803.10070v1

  111. Zi Y, Niu S, Wang J, Wen Z, Tang W, Wang ZL (2015) Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat Commun 6(1):8376. https://doi.org/10.1038/ncomms9376

    Article  CAS  Google Scholar 

  112. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  113. Wang J et al (2017) Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat Commun 8(1):88. https://doi.org/10.1038/s41467-017-00131-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Parvez Mahmud.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wajahat, M., Kouzani, A.Z., Khoo, S.Y. et al. A review on extrusion-based 3D-printed nanogenerators for energy harvesting. J Mater Sci 57, 140–169 (2022). https://doi.org/10.1007/s10853-021-06637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06637-z

Navigation