Log in

A hyperbolic phase-field model for rapid solidification of a binary alloy

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A hyperbolic phase-field model (PFM) was proposed from the thermodynamic extremal principle for rapid solidification of a binary alloy. In the modeling, not only the interface but also the bulk phases are under non-equilibrium conditions. Dissipation inside the interface, its relations to the sharp interface models, and the previous PFMs are discussed. The solute diffusion in liquid splits into the long-range solute diffusion and the short-range solute redistribution between solid and liquid if the solute diffusion in solid is negligible, being consistent with a recent concept of finite interface dissipation proposed by Steinbach and coauthors (Steinbach in Annu Rev Mater Res 43:89–107, 2013; Steinbach et al. in Acta Mater 60:2689–2701, 2012; Zhang, Steinbach in Acta Mater 60:2702–2710, 2012; Zhang et al. in Acta Mater 61:4155–4168, 2013). Complete solute trap** is predicted when the interface velocity is equal to or larger than the maximal solute diffusion velocity. The interface kinetics is analyzed theoretically and simulated numerically for the rapid solidification of Si–9 at.% As alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. It must be pointed out that all the thermodynamic principles for modeling of the non-equilibrium dissipative systems (e.g., the Onsager’s least energy dissipation principle [21], the maximal entropy production principle [22, 23]) are renamed uniformly as the TEP in a recent review of Fisher et al. [24].

  2. The superscript “*” in the current work denotes the values at the boundary between interface and solid (liquid) in the thick interface or the values at the sharp interface.

  3. Similar to Galenko et al. [20], the non-equilibrium bulk contribution influences the long-range solute diffusion but not the short-range solute redistribution between solid and liquid.

References

  1. Steinbach I (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17:073001

    Article  Google Scholar 

  2. Steinbach I, Shchyglo O (2011) Phase-field modelling of microstructure evolution in solids: perspectives and challenges. Curr Opin Solid State Mater Sci 15:87–92

    Article  Google Scholar 

  3. Steinbach I (2013) Phase-field model for microstructure evolution at the mesoscopic scale. Annu Rev Mater Res 43:89–107

    Article  Google Scholar 

  4. Emmerich H (2008) Advances of and by phase-field modelling in condensed-matter physics. Adv Phys 57:1–87

    Article  Google Scholar 

  5. McKenna IM, Gururajan MP, Voorhees PW (2009) Phase field modeling of grain growth: effect of boundary thickness, triple junctions, misorientation, and anisotropy. J Mater Sci 44:2206–2217. doi:10.1007/s10853-008-3196-7

    Article  Google Scholar 

  6. Tang JJ, Xue X (2009) Phase-field simulation of directional solidification of a binary alloy under different boundary heat flux conditions. J Mater Sci 44:745–753. doi:10.1007/s10853-008-3157-1

    Article  Google Scholar 

  7. Wheeler AA, Boettinger WJ, McFadden GB (1992) Phase-field model for isothermal phase transitions in binary alloys. Phys Rev A 45:7424–7439

    Article  Google Scholar 

  8. Karma A (2001) Phase-field Formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87:115701

    Article  Google Scholar 

  9. Echebarria B, Folch R, Karma A, Plapp M (2004) Quantitative phase-field model of alloy solidification. Phys Rev E 70:061604

    Article  Google Scholar 

  10. Tiaden J, Nestler B, Diepers HJ, Steinbach I (1998) The multiphase-field model with an integrated concept for modelling solute diffusion. Physica D 115:73–86

    Article  Google Scholar 

  11. Kim SG, Kim WT, Suzuki T (1999) Phase-field model for binary alloys. Phys Rev E 60:7186–7197

    Article  Google Scholar 

  12. Eiken J, Böttger B, Steinbach I (2006) Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Phys Rev E 73:066122

    Article  Google Scholar 

  13. Böttger B, Eiken J, Steinbach I (2006) Phase field simulation of equiaxed solidification in technical alloys. Acta Mater 54:2697–2704

    Article  Google Scholar 

  14. Steinbach I, Zhang LJ, Plapp M (2012) Phase-field model with finite interface dissipation. Acta Mater 60:2689–2701

    Article  Google Scholar 

  15. Zhang LJ, Steinbach I (2012) Phase-field model with finite interface dissipation: extension to multi-component multi-phase alloys. Acta Mater 60:2702–2710

    Article  Google Scholar 

  16. Zhang LJ, Danilova EV, Steinbach I et al (2013) Diffuse-interface modeling of solute trap** in rapid solidification: predictions of the hyperbolic phase-field model and parabolic model with finite interface dissipation. Acta Mater 61:4155–4168

    Article  Google Scholar 

  17. Wang HF, Liu F, Ehlen GJ, Herlach DM (2013) Application of the maximal entropy production principle to rapid solidification: a multi-phase-field model. Acta Mater 61:2617–2627

    Article  Google Scholar 

  18. Galenko P (2001) Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system. Phys Lett A 287:190–197

    Article  Google Scholar 

  19. Lebedev VG, Abramova EV, Danilov DA, Galenko PK (2010) Phase-field modeling of solute trap** comparative analysis of parabolic and hyperbolic models. Int J Mat Res 101:473–479

    Article  Google Scholar 

  20. Galenko P, Abramova EV, Jou D et al (2011) Solute trap** in rapid solidification of a binary dilute system: a phase-field study. Phys Rev E 84:041143

    Article  Google Scholar 

  21. Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37:405–426

    Article  Google Scholar 

  22. Ziegler H (1983) An introduction to thermodynamics. North-Holland, Amsterdam

    Google Scholar 

  23. Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys Rep 426:1–45

    Article  Google Scholar 

  24. Fischer FD, Svoboda J, Petryk H (2014) Thermodynamic extremal principles for irreversible processes in materials science. Acta Mater 67:1–20

    Article  Google Scholar 

  25. Jou D, Casas-Vázquez J, Lebon G (2010) Extended irreversible thermodynamics. Springer, Berlin

    Book  Google Scholar 

  26. Galenko PK, Sobolev SL (1997) Local nonequilibrium effect on undercooling in rapid solidification of alloys. Phys Rev E 55:343–352

    Article  Google Scholar 

  27. Galenko PK (2002) Extended thermodynamical analysis of a motion of the solid–liquid interface in a rapidly solidifying alloy. Phys Rev B 65:144103

    Article  Google Scholar 

  28. Galenko PK (2007) Solute trap** and diffusionless solidification in a binary system. Phys Rev E 76:031606

    Article  Google Scholar 

  29. Aziz MJ (1982) Model for solute redistribution during rapid solidification. J Appl Phys 53:1158–1168

    Article  Google Scholar 

  30. Aziz MJ, Kaplan T (1988) Continuous growth model for interface motion during alloy solidification. Acta Metall 36:2335–2347

    Article  Google Scholar 

  31. Galenko PK, Danilov DA (1997) Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt. Phys Lett A 235:271–280

    Article  Google Scholar 

  32. Galenko PK, Danilov DA (1999) Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions. J Cryst Growth 197:992–1002

    Article  Google Scholar 

  33. Yang Y, Humadi H, Buta D et al (2011) Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts. Phys Rev Lett 107:025505

    Article  Google Scholar 

  34. Baker JC (1970) Interfacial partitioning during solidification. PhD thesis, MIT

  35. Svoboda J, Turek I (1991) On diffusion-controlled evolution of closed solid-state thermodynamic systems at constant temperature and pressure. Philos Mag B 64:749–759

    Article  Google Scholar 

  36. Svoboda J, Turek I, Fischer FD (2005) Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos Mag 85:3699–3707

    Article  Google Scholar 

  37. Svoboda J, Fischer FD, Fratzl P, Kroupa A (2002) Diffusion in multi-component systems with no or dense sources and sinks for vacancies. Acta Mater 50:1369–1381

    Article  Google Scholar 

  38. Svoboda J, Fischer FD, McDowell DL (2012) Derivation of the phase field equations from the thermodynamic extremal principle. Acta Mater 60:396–406

    Article  Google Scholar 

  39. Cahn JW, Hillard J (1958) Free energy of a nonuniform system. I. Interface free energy. J Chem Phys 28:258–267

    Article  Google Scholar 

  40. Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:1085–1095

    Article  Google Scholar 

  41. Wang HF, Zhang X, Lai C, Kuang WW, Liu F (2014) Thermodynamic principles for phase-field modeling of alloy solidification. Curr Opin Chem Eng. doi:10.1016/j.coche.2014.09.004

    Google Scholar 

  42. Penrose O, Fife PC (1990) Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43:44–62

    Article  Google Scholar 

  43. Wang SL, Sekerka RF, Wheeler AA et al (1993) Thermodynamically consistent phase-field models for solidification. Physica D 69:189–200

    Article  Google Scholar 

  44. Sekerka RF (2011) Irreversible thermodynamic basis of phase field models. Philos Mag 91:3–23

    Article  Google Scholar 

  45. Galenko P, Jou D (2005) Diffuse-interface model for rapid phase transformations in nonequilibrium systems. Phys Rev E 71:046125

    Article  Google Scholar 

  46. Galenko P, Jou D (2009) Kinetic contribution to the fast spinodal decomposition controlled by diffusion. Physica A 388:3113–3123

    Article  Google Scholar 

  47. Moelans N (2011) A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems. Acta Mater 59:1077–1086

    Article  Google Scholar 

  48. Hillert M, Rettenmayr M (2003) Deviation from local equilibrium at migrating phase interfaces. Acta Mater 51:2803–2809

    Article  Google Scholar 

  49. Hillert M, Odqvist J, Ǻgren J (2004) Interface conditions during diffusion-controlled phase transformations. Scripta Mater 50:547–550

    Article  Google Scholar 

  50. Wang HF, Liu F, Zhai HM, Wang K (2012) Application of the maximal entropy production principle to rapid solidification: a sharp interface model. Acta Mater 60:1444–1454

    Article  Google Scholar 

  51. Hillert M (1999) Solute drag, solute trap** and diffusional dissipation of gibbs energy. Acta Mater 47:4481–4505

    Article  Google Scholar 

  52. Ahmad NA, Wheeler AA, Boettinger WJ, McFadden GB (1998) Solute trap** and solute drag in a phase-field model of rapid solidification. Phys Rev E 58:3436–3450

    Article  Google Scholar 

  53. Wheeler AA, Boettinger WJ, McFadden GB (1993) Phase-field model of solute trap** during solidification. Phys Rev E 47:1893–1909

    Article  Google Scholar 

Download references

Acknowledgements

Haifeng Wang would like to thank the support of Alexander von Humboldt Foundation for a research fellowship, Prof. Peter Galenko for his valuable comments, and Prof. Ingo Steinbach for his continuous encouragement on this work. The authors are grateful to the National Basic Research Program of China (973 Program, No. 2011CB610403), the National Science Funds for Distinguished Young Scientists (No. 51125002), the Natural Science Foundation of China (Nos. 51371149 and 51101122), and the Free Research Fund of State Key Laboratory of Solidification Processing (No. 92-QZ-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Kuang, W., Zhang, X. et al. A hyperbolic phase-field model for rapid solidification of a binary alloy. J Mater Sci 50, 1277–1286 (2015). https://doi.org/10.1007/s10853-014-8686-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8686-1

Keywords

Navigation