Log in

Effective Two-Stage Image Segmentation: A New Non-Lipschitz Decomposition Approach with Convergent Algorithm

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Image segmentation is an important median level vision topic. Accurate and efficient multiphase segmentation for images with intensity inhomogeneity is still a great challenge. We present a new two-stage multiphase segmentation method trying to tackle this, where the key is to compute an inhomogeneity-free approximate image. For this, we propose to use a new non-Lipschitz variational decomposition model in the first stage. The minimization problem is solved by an iterative support shrinking algorithm. By assuming that the subproblem at each iteration is exactly solved, we show the global convergence of the iterative algorithm and a lower bound theory of the image gradient of the iterative sequence, which indicates that the generated approximate image (inhomogeneity-corrected component) is with very neat edges and suitable for the following thresholding operation. Implementation details based on the alternating direction method of multipliers for the strongly convex subproblems are also given. In the second stage, the segmentation is done by applying a widely used simple thresholding technique to the piecewise constant approximation. Numerical experiments indicate good convergence properties and effectiveness of our method in multiphase segmentation for either clean or noisy homogeneous and inhomogeneous images. Both visual and quantitative comparisons with some state-of-the-art approaches demonstrate the performance advantages of our non-Lipschitz-based method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cai, X., Chan, R., Zeng, T.: A two-stage image segmentation method using a convex variant of the Mumford–Shah model and thresholding. SIAM J. Imaging Sci. 6(1), 368–390 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Duan, Y., Chang, H., Huang, W., Zhou, J., Zhongkang, L., Wu, C.: The \(l_0\) regularized mumford-shah model for bias correction and segmentation of medical images. IEEE Trans. Image Process. 24(11), 3927–3938 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Chang, H., Huang, W., Wu, C., Huang, S., Guan, C., Sekar, S., Bhakoo, K.K., Duan, Y.: A new variational method for bias correction and its applications to rodent brain extraction. IEEE Trans. Med. Imaging 36(3), 721–733 (2017)

    Article  Google Scholar 

  4. Chan, R., Lanza, A., Morigi, S., Sgallari, F.: Convex non-convex image segmentation. Numer. Math. 138(3), 635–680 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, Z., Zeng, T.: A two-stage image segmentation model for multi-channel images. Commun. Comput. Phys. 19(4), 904–926 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, X., Chan, R., Schonlieb, C., Steidl, G., Zeng, T.: Linkage between piecewise constant mumford-shah model and rof model and its virtue in image segmentation. SIAM J. Sci. Comput. 41(6), B1310–B1340 (2019)

    Article  MATH  Google Scholar 

  7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  8. Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  10. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  11. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  13. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  14. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: European Conference on Computer Vision, pp. 792–805 (2008)

  16. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp. 150–162 (2009)

  17. Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. In: International Conference on Computer Vision, pp. 646–653 (2009)

  18. Brown, E.S., Chan, T.F., Bresson, X.: Convex formulation and exact global solutions for multi-phase piecewise constant Mumford–Shah image segmentation. Technical report (2009)

  19. Brown, E.S., Chan, T.F., Bresson, X.: A convex relaxation method for a class of vector-valued minimization problems with applications to Mumford–Shah segmentation. Technical report (2010)

  20. Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imaging Sci. 4(4), 1049–1096 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bae, E., Yuan, J., Tai, X.-C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vis. 92(1), 112–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Brown, E.S., Chan, T.F., Bresson, X.: Completely convex formulation of the Chan–Vese image segmentation model. Int. J. Comput. Vis. 98(1), 103–121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, F., Ng, M.K., Zeng, T.Y., Shen, C.: A multiphase image segmentation method based on fuzzy region competition. SIAM J. Imaging Sci. 3(3), 277–299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vese, L.: Multiphase object detection and image segmentation. In: Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 175–194. Springer (2003)

  25. Li, C., Kao, C.-Y., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, C., Leng, J., Guoliang, X.: A general framework of piecewise-polynomial Mumford–Shah model for image segmentation. Int. J. Comput. Math. 94(10), 1981–1997 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, C., Huang, R., Ding, Z., Chris Gatenby, J., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Y., Wu, C., Duan, Y.: The TV\(_p\) regularized Mumford-Shah model for image labeling and segmentation. IEEE Trans. Image Process. 29, 7061–7075 (2020)

  29. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ng, M.K., Wang, W.: A total variation model for retinex. SIAM J. Imaging Sci. 4(1), 345–365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liang, J., Zhang, X.: Retinex by higher order total variation \(l^1\) decomposition. J. Math. Imaging Vis. 52(3), 345–355 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Model. Simul. 4(3), 960–991 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, X., Ng, M.K., Zhang, C.: Non-lipschitz \(l_p\)-regularization and box constrained model for image restoration. IEEE Trans. Image Process. 21(12), 4709–4721 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Zeng, C., Wu, C.: On the edge recovery property of noncovex nonsmooth regularization in image restoration. SIAM J. Numer. Anal. 56(2), 1168–1182 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zeng, C., Chunlin, W., Jia, R.: Non-lipschitz models for image restoration with impulse noise removal. SIAM J. Imaging Sci. 12(1), 420–458 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bian, W., Chen, X.: Linearly constrained non-Lipschitz optimization for image restoration. SIAM J. Imaging Sci. 8(4), 2294–2322 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, X., Niu, L., Yuan, Y.: Optimality conditions and a smoothing trust region newton method for nonlipschitz optimization. SIAM J. Optim. 23(3), 1528–1552 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zeng, C., Jia, R., Wu, C.: An iterative support shrinking algorithm for non-Lipschitz optimization in image restoration. J. Math. Imaging Vis. 61(1), 122–139 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Foucart, S., Lai, M.-J.: Sparsest solutions of underdetermined linear systems via \(l_q\)-minimization for \(0<q\le 1\). Appl. Comput. Harmonic Anal. 26(3), 395–407 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chen, X., Zhou, W.: Convergence of the reweighted \(l_1\) minimization algorithm for \(l_2-l_p\) minimization. Comput. Optim. Appl. 59(1–2), 47–61 (2014)

    Article  MathSciNet  Google Scholar 

  41. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: International Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872 (2008)

  42. Daubechies, I., DeVore, R., Fornasier, M., Sinan Güntürk, C.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1–38 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lai, M.-J., Yangyang, X., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed \(l_q\) minimization. SIAM J. Numer. Anal. 51(2), 927–957 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, Z., Wu, C., Zhao, Y.: A new globally convergent algorithm for non-lipschitz \(l_p-l_q\) minimization. Adv. Comput. Math. 45(3), 1369–1399 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zheng, Z., Ng, M.K., Wu, C.: A globally convergent algorithm for a class of gradient compounded non-Lipschitz models applied to non-additive noise removal. Inverse Probl. 36(12), 125017 (2020)

  46. Wang, Y., Pang, Z., Duan, Y., Chen, K.: Image Retinex based on the nonconvex TV-type regularization. Inverse Probl Imaging (accepted)

  47. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wu, C., Guo, X., Xue, Y.: A general and non-Lipschitz infimal convolution regularized model: lower bound theory, algorithms, and two applications (submitted)

  50. Tyrrell Rockafellar, R., Wets, R.J.-B.: Variational Analysis, vol. 317. Springer, New York (2009)

    MATH  Google Scholar 

  51. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1–2), 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Les équations aux dérivées partielles 117, 87–89 (1963)

    MATH  Google Scholar 

  53. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Annales de l’institut Fourier 48(3), 769–783 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Bolte, J., Daniilidis, A., Lewis, A.: The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)

    Article  MATH  Google Scholar 

  55. Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116(1–2), 5–16 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization or nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision. SIAM J. Imaging Sci. 8(1), 331–372 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang, X., Bai, M., Michael, K.N.: Nonconvex-tv based image restoration with impulse noise removal. SIAM J. Imaging Sci. 10(3), 1627–1667 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  61. Glowinski, R., Le Tallec, P.: Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics. Studies in Applied and Numerical Mathematics, SIAM (1989)

  62. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  63. Ng, M.K., Chan, R.H., Tang, W.-C.: A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J. Sci. Comput. 21(3), 851–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  64. Likar, B., Viergever, M.A., Pernus, F.: Retrospective correction of mr intensity inhomogeneity by information minimization. IEEE Trans. Med. Imaging 20(12), 1398–1410 (2001)

    Article  Google Scholar 

  65. Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5), 856–876 (2001)

    Article  Google Scholar 

  66. Van den Dries, L., Miller, C., et al.: Geometric categories and o-minimal structures. Duke Math. J 84(2), 497–540 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the authors of [1,2,3,4] and [27] for sharing their source codes. We are also very grateful to the anonymous reviewers for their valuable suggestions which helped to improve this paper greatly. This work was supported in part by NSFC 11871035 (C. Wu), NSFC 11531013 (C. Wu) and Recruitment Program of Global Young Experts (C. Wu), NSFTJ-17JCYBJC15800 (Y. Xue), the Key Laboratory for Medical Data Analysis and Statistical Research of Tian** (C. Wu, Y. Xue).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Definition 7.1

(Subdifferentials [50]) Let \(\sigma : \mathbb {R}^d \rightarrow (-\infty ,+\infty ]\) be a proper and lower semicontinuous function. The domain of \(\sigma \) is defined as \(\mathrm {dom}\sigma =\{u \in \mathbb {R}^d: \sigma (u)<+\infty \}\). For a point \(u \in \mathrm {dom}\sigma \),

  1. 1.

    the regular subdifferential of \(\sigma \) at u is defined as

    $$\begin{aligned} \widehat{\partial }\sigma (u) =\left\{ w\in \mathbb {R}^d: \lim _{v \ne u}\inf _{v \rightarrow u}\frac{\sigma (v)-\sigma (u)-\langle w,v-u\rangle }{\Vert v-u\Vert }\ge 0 \right\} ; \end{aligned}$$
  2. 2.

    the subdifferential of \(\sigma \) at u is defined as

    $$\begin{aligned} \partial \sigma (u)= & {} \{w\in \mathbb {R}^d: \exists u^k\rightarrow u,\sigma (u^k)\rightarrow \sigma (u) \\&\qquad \qquad \text{ and } w^k \in \widehat{\partial }\sigma (u^k)\rightarrow w \text{ as } k\rightarrow \infty \}. \end{aligned}$$

Remark 7.2

From Definition 7.1, it is clear that if \(\sigma \) is differentiable at u, then \(\widehat{\partial }\sigma (u) = \partial \sigma (u) = \{\nabla \sigma (u)\}\). If \(0 \in \partial \sigma (u)\), then we call \(u \in \mathbb {R}^d\) a critical point of \(\sigma \).

Definition 7.3

(Kurdyka–Łojasiewicz (KL) property [57])

  1. 1.

    The function \(\sigma : \mathbb {R}^d \rightarrow (-\infty ,+\infty ]\) is said to have the Kurdyka-Łojasiewicz property at \(\overline{u} \in \mathrm {dom}\partial \sigma := \{u \in \mathbb {R}^d: \partial \sigma (u) \ne \emptyset \}\) if there exist \(\eta \in (0,+\infty ]\), a neighborhood U of \(\overline{u}\), and a continuous concave function \(\psi :[0,\eta ) \rightarrow (0,+\infty ]\) such that

    1. (i)

      \(\psi (0)=0\);

    2. (ii)

      \(\psi \) is continuously differentiable on \((0,\eta )\);

    3. (iii)

      for all \(s \in (0,\eta )\), \(\psi '(s)>0\);

    4. (iv)

      for all \(u \in U \cap \{v \in \mathbb {R}^d: \sigma (\overline{u})< \sigma (v) < \sigma (\overline{u})+ \eta \}\), the Kurdyka-Łojasiewicz (KL) inequality holds:

      $$\begin{aligned} \psi '(\sigma (u)-\sigma (\overline{u})) \mathrm {dist}(0,\partial \sigma (u)) \ge 1, \end{aligned}$$

      where \(\mathrm {dist}(0, \partial \sigma (u)):= \inf \{\Vert v\Vert : v \in \partial \sigma (u)\}\).

A function \(\sigma \) is called a KL function, if \(\sigma \) satisfies the KL property at each point of \(\mathrm {dom}\partial \sigma \). A rich class of KL functions of great interests are in a so-called o-minimal structure defined in [66]. The following definition is from [57, Definition 4.1].

Definition 7.4

(o-minimal structure on \(\mathbb {R}\)) Let \(\mathscr {O} = \{\mathscr {O}_n\}_{n \in \mathbb {N}}\) such that each \(\mathscr {O}_n\) is a collection of subsets of \(\mathbb {R}^n\). The family \(\mathscr {O}\) is an o-minimal structure on \(\mathbb {R}\), if it satisfies the following axioms:

  1. (i)

    Each \(\mathscr {O}_n\) is a boolean algebra. Namely \(\emptyset \in \mathscr {O}_n\) and for each AB in \(\mathscr {O}_n\), \(A \cup B\), \(A \cap B\), and \(\mathbb {R}^n {\setminus } A\) belong to \(\mathscr {O}_n\).

  2. (ii)

    For all A in \(\mathscr {O}_n\), \(A \times \mathbb {R}\) and \(\mathbb {R} \times A\) belong to \(\mathscr {O}_{n+1}\).

  3. (iii)

    For all A in \(\mathscr {O}_{n+1}\), \(\Pi (A):= \{(x_1,\ldots ,x_n)\in \mathbb {R}^n: (x_1,\ldots ,x_n,x_{n+1}) \in A\}\) belongs to \(\mathscr {O}_{n}\).

  4. (iv)

    For all \(i \ne j\) in \(\{1,2,\ldots ,n\}\), \(\{(x_1,\ldots ,x_n) \in \mathbb {R}^n: x_i = x_j\}\) belongs to \(\mathscr {O}_n\).

  5. (v)

    The set \(\{(x_1,x_2) \in \mathbb {R}^2: x_1<x_2\}\) belongs to \(\mathscr {O}_2\).

  6. (vi)

    The elements of \(\mathscr {O}_1\) are exactly finite unions of intervals.

Let \(\mathscr {O}\) be an o-minimal structure on \(\mathbb {R}\). We call a set \(A \subseteq \mathbb {R}^n\) definable on \(\mathscr {O}\) if \(A \in \mathscr {O}_n\), and a map \(f: \mathbb {R}^n \rightarrow \mathbb {R}^m\) definable on \(\mathscr {O}\) if its graph \(\{(x,y) \in \mathbb {R}^n \times \mathbb {R}^m: y \in f(x)\}\) is definable on \(\mathscr {O}\). A definable function is a special definable map. Some useful properties of definable functions [38, 57] are listed as follows:

  1. (i)

    compositions of definable functions are definable;

  2. (ii)

    finite sums of definable functions are definable;

  3. (iii)

    indicator functions of definable sets are definable.

We have a very useful class of o-minimal structure, i.e., the log-exp structure [66, Example 2.5]. By this, the following functions are all definable:

  1. (1)

    semi-algebraic functions [58, Definition 5], such as real polynomial functions, and \(f: \mathbb {R} \rightarrow \mathbb {R}\) defined by \(x \mapsto |x|\).

  2. (2)

    \(x^r : \mathbb {R} \rightarrow \mathbb {R}\) defined by

    $$\begin{aligned} a \mapsto {\left\{ \begin{array}{ll} a^r, &{}\quad a >0 \\ 0, &{}\quad a \le 0, \end{array}\right. } \end{aligned}$$

    where \(r \in \mathbb {R}\).

We know that any proper lower semicontinuous function definable on an o-minimal structure is a KL function; see [55] and [57, Theorem 14]. For F(uv) in this paper, \(\Vert f-u-v\Vert ^2\), \(\Vert D_i u\Vert \), \(\Vert Hv\Vert ^2\) and \(\Vert v\Vert ^2\) are all semi-algebraic functions. In addition, from examples (1)(2) and the elementary properties (i)(ii) of definable functions, we know that F(uv) is definable. Thus, F(uv) is a KL function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Xue, Y. & Wu, C. Effective Two-Stage Image Segmentation: A New Non-Lipschitz Decomposition Approach with Convergent Algorithm. J Math Imaging Vis 63, 356–379 (2021). https://doi.org/10.1007/s10851-020-01001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-020-01001-3

Keywords

Navigation