Log in

Study on the recognition of psoralen and psoralen@cucurbit[8]uril fluorescent probe for Fe3+ ions

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The interaction between psoralen (PSA) and cucurbit[8]uril (Q[8]) was studied by UV spectroscopy, fluorescence spectroscopy, infrared spectroscopy, 1H NMR and X-ray crystal diffraction. The results showed that PSA and Q[8] can form a 2:1 host–guest inclusion complex with a binding constant of 1.83 × 106 M−2. PSA and PSA2@Q[8] can be used as fluorescent probes to selectively recognize Fe3+. The recognition mechanism is due to the coordination effect of Fe3+, the electron transfer in PSA and PSA2@Q[8] reduces fluorescence intensity and leads to fluorescence quenching. The fluorescence intensity of PSA and PSA2@Q[8] showed a good linear correlation with the concentration of Fe3+ at 3.0 × 10–5–2.4 × 10–4 M and 6.0 × 10–6–4.2 × 10–5 M, and the limit of detection was 1.06 × 10–7 M and 1.05 × 10–8 M, respectively, which can quantitatively detect trace Fe3+ in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kagit, R., Yildirim, M., Ozay, O., Yesilot, S., Ozay, H.: Phosphazene based multicentered naked-eye fluorescent sensor with high selectivity for Fe3+ ions. Inorg. Chem. 53, 2144–2151 (2014). https://doi.org/10.1021/ic402783x

    Article  CAS  PubMed  Google Scholar 

  2. Brugnara, C.: Iron deficiency and erythropoiesis: new diagnostic approaches. Clin. Chem. 49, 1573–1578 (2003). https://doi.org/10.1373/49.10.1573

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, X.-B., Cheng, G., Zhang, W.-J., Shen, G.-L., Yu, R.-Q.: A fluorescent chemical sensor for Fe3+ based on blocking of intramolecular proton transfer of a quinazolinone derivative. Talanta 71, 171–177 (2007). https://doi.org/10.1016/j.talanta.2006.03.036

    Article  CAS  PubMed  Google Scholar 

  4. Cabon, J.Y., Giamarchi, P., Le Bihan, A.: Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: a comparative study. Anal. Chim. Acta 664, 114–120 (2010). https://doi.org/10.1016/j.aca.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  5. Saracoglu, S., Soylak, M., Peker, D.S.K., Elci, L., dos Santos, W.N.L., Lemos, V.A., Ferreira, S.L.C.: A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry. Anal. Chim. Acta 575, 133–137 (2006). https://doi.org/10.1016/j.aca.2006.05.055

    Article  CAS  PubMed  Google Scholar 

  6. Bakkaus, E., Collins, R.N., Morel, J.-L., Gouget, B.: Anion exchange liquid chromatography–inductively coupled plasma-mass spectrometry detection of the Co2+, Cu2+, Fe3+ and Ni2+ complexes of mugineic and deoxymugineic acid. J. Chromatogr. A 1129, 208–215 (2006). https://doi.org/10.1016/j.chroma.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  7. Pomazal, K., Prohaska, C., Steffan, I., Reich, G., Huber, J.F.K.: Determination of Cu, Fe, Mn, and Zn in blood fractions by SEC-HPLC-ICP-AES coupling. Analyst 124, 657–663 (1999). https://doi.org/10.1039/A809688K

    Article  CAS  PubMed  Google Scholar 

  8. Bobrowski, A., Nowak, K., Zarębski, J.: Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe(III)–TEA–BrO3−catalytic system. Anal. Bioanal. Chem. 382, 1691–1697 (2005). https://doi.org/10.1007/s00216-005-3313-2

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, J.F., Zhou, Y., Yoon, J., Kim, J.S.: Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem. Soc. Rev. 40, 3416–3429 (2011). https://doi.org/10.1039/C1CS15028F

    Article  CAS  PubMed  Google Scholar 

  10. Wu, D., Chen, L., Lee, W., Ko, G., Yin, J., Yoon, J.: Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions. Coord. Chem. Rev. 354, 74–97 (2018). https://doi.org/10.1016/j.ccr.2017.06.011

    Article  CAS  Google Scholar 

  11. Sedgwick, A.C., Wu, L., Han, H.-H., Bull, S.D., He, X.-P., James, T.D., Sessler, J.L., Tang, B.Z., Tian, H., Yoon, J.: Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 47, 8842–8880 (2018). https://doi.org/10.1039/c8cs00185e

    Article  CAS  PubMed  Google Scholar 

  12. Park, S.-H., Kwon, N., Lee, J.-H., Yoon, J., Shin, I.: Synthetic ratiometric fluorescent probes for detection of ions. Chem. Soc. Rev. 49, 143–179 (2020). https://doi.org/10.1039/c9cs00243j

    Article  CAS  PubMed  Google Scholar 

  13. Marshall, M.E., Conley, D., Hollingsworth, P., Brown, S., Thompson, J.S.: Effects of coumarin (1,2-benzopyrone) on lymphocyte, natural killer cell, and monocyte functions in vitro. J. Biol. Response Modif. 8, 70–85 (1989). https://doi.org/10.1016/S0090-8258(89)80046-0

    Article  CAS  Google Scholar 

  14. Wang, X., Cheng, K., Han, Y., Zhang, G., Dong, J., Cui, Y., Yang, Z.: Effects of psoralen as an anti-tumor agent in human breast cancer MCF-7/ADR cells. Biol. Pharm. Bull. 39, 815–822 (2016). https://doi.org/10.1248/bpb.b15-00957

    Article  PubMed  Google Scholar 

  15. Ng, T.B., Liu, F., Wang, Z.T.: Antioxidative activity of natural products from plants. Life Sci. 66, 709–723 (2000). https://doi.org/10.1016/S0024-3205(99)00642-6

    Article  CAS  PubMed  Google Scholar 

  16. Ren, Y., Song, X., Tan, L., Guo, C., Wang, M., Liu, H., Cao, Z., Li, Y., Peng, C.: A review of the pharmacological properties of psoralen. Front. Pharmacol. (2020). https://doi.org/10.3389/fphar.2020.571535

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tian, G., Zhang, Z., Li, H., Li, D., Wang, X., Qin, C.: Design, synthesis and application in analytical chemistry of photo-sensitive probes based on coumarin. Crit. Rev. Anal. Chem. 51, 565–581 (2021). https://doi.org/10.1080/10408347.2020.1753163

    Article  CAS  PubMed  Google Scholar 

  18. Barrow, S.J., Kasera, S., Rowland, M.J., del Barrio, J., Scherman, O.A.: Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015). https://doi.org/10.1021/acs.chemrev.5b00341

    Article  CAS  PubMed  Google Scholar 

  19. Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015). https://doi.org/10.1039/c4cs00273c

    Article  CAS  PubMed  Google Scholar 

  20. Masson, E., Ling, X.X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.Y.: Cucurbituril chemistry: a tale of supramolecular success. Rsc. Adv. 2, 1213–1247 (2012). https://doi.org/10.1039/c1ra00768h

    Article  CAS  Google Scholar 

  21. Shetty, D., Khedkar, J.K., Park, K.M., Kim, K.: Can we beat the biotin-avidin pair?: Cucurbit 7 uril-based ultrahigh affinity host-guest complexes and their applications. Chem. Soc. Rev. 44, 8747–8761 (2015). https://doi.org/10.1039/c5cs00631g

    Article  CAS  PubMed  Google Scholar 

  22. Samanta, S.K., Moncelet, D., Briken, V., Isaacs, L.: Metal-organic polyhedron capped with cucurbit 8 uril delivers doxorubicin to cancer cells. J. Am. Chem. Soc. 138, 14488–14496 (2016). https://doi.org/10.1021/jacs.6b09504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lazar, A.I., Biedermann, F., Mustafina, K.R., Assaf, K.I., Hennig, A., Nau, W.M.: Nanomolar binding of steroids to cucurbit n urils: selectivity and applications. J. Am. Chem. Soc. 138, 13022–13029 (2016). https://doi.org/10.1021/jacs.6b07655

    Article  CAS  PubMed  Google Scholar 

  24. Liao, P.-Q., Huang, N.-Y., Zhang, W.-X., Zhang, J.-P., Chen, X.-M.: Controlling guest conformation for efficient purification of butadiene. Science 356, 1193–1196 (2017). https://doi.org/10.1126/science.aam7232

    Article  CAS  PubMed  Google Scholar 

  25. Wu, M.-X., Yang, Y.-W.: Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1606134 (2017). https://doi.org/10.1002/adma.201606134

    Article  CAS  Google Scholar 

  26. Karcher, S., Kornmüller, A., Jekel, M.: Effects of alkali and alkaline-earth cations on the removal of reactive dyes with cucurbituril. Acta Hydrochim. et Hydrobiol. 27, 38–42 (1999). https://doi.org/10.1002/(SICI)1521-401X(199901)27:1%3C38::AID-AHEH38%3E3.0.CO;2-U

    Article  CAS  Google Scholar 

  27. Karcher, S., Kornmüller, A., Jekel, M.: Removal of reactive dyes by sorption/complexation with cucurbituril. Water Sci. Technol. 40, 425–433 (1999). https://doi.org/10.1016/S0273-1223(99)00526-0

    Article  CAS  Google Scholar 

  28. Shinde, M.N., Choudhury, S.D., Barooah, N., Pal, H., Bhasikuttan, A.C., Mohanty, J.: Metal-ion-mediated assemblies of thiazole orange with cucurbit 7 uril: a photophysical study. J. Phys. Chem. B 119, 3815–3823 (2015). https://doi.org/10.1021/jp512802u

    Article  CAS  PubMed  Google Scholar 

  29. Xu, Y., Panzner, M.J., Li, X., Youngs, W.J., Pang, Y.: Host–guest assembly of squaraine dye in cucurbit[8]uril: its implication in fluorescent probe for mercury ions. Chem. Commun. 46, 4073–4075 (2010). https://doi.org/10.1039/C002219P

    Article  CAS  Google Scholar 

  30. Zeng, Z.-S., Zhang, Y.-Q., Zhang, X.-D., Luo, G.-Y., **e, J., Tao, Z., Zhang, Q.-J.: Selective detection of Zn2+ and Cd2+ ions in water using a host-guest complex between chromone and Q[7]. Chin. Chem. Lett. 32, 2572–2576 (2021). https://doi.org/10.1016/j.cclet.2021.03.071

    Article  CAS  Google Scholar 

  31. Thordarson, P.: Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011). https://doi.org/10.1039/C0CS00062K

    Article  CAS  PubMed  Google Scholar 

  32. Ding, S.-Y., Dong, M., Wang, Y.-W., Chen, Y.-T., Wang, H.-Z., Su, C.-Y., Wang, W.: Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J. Am. Chem. Soc. 138, 3031–3037 (2016). https://doi.org/10.1021/jacs.5b10754

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, B., Liu, T., Fang, Y., Wang, L., Song, B., Deng, Q.: Two ‘turn-off’ Schiff base fluorescence sensors based on phenanthro[9,10-d]imidazole-coumarin derivatives for Fe3+ in aqueous solution. Tetrahedron Lett. 57, 4417–4423 (2016). https://doi.org/10.1016/j.tetlet.2016.08.064

    Article  CAS  Google Scholar 

  34. Kargar, H., Fallah-Mehrjardi, M., Behjatmanesh-Ardakani, R., Munawar, K.S., Ashfaq, M., Tahir, M.N.: Diverse coordination of isoniazid hydrazone Schiff base ligand towards iron(III): synthesis, characterization, SC-XRD, HSA, QTAIM, MEP, NCI, NBO and DFT study. J. Mol. Struct. 1250, 131691 (2022). https://doi.org/10.1016/j.molstruc.2021.131691

    Article  CAS  Google Scholar 

Download references

Funding

The Science and Technology Support Plan of Guizhou Province [GuiZhou Science and Technology Cooperation Support (2020)4Y218] is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Xuanxun Wang and Qianjun Zhang wrote the main manuscript text and Guangyan Luo prepared Fig. 9. Other authors reviewed the manuscript.

Corresponding author

Correspondence to Qianjun Zhang.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 669 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Luo, G., Zhang, L. et al. Study on the recognition of psoralen and psoralen@cucurbit[8]uril fluorescent probe for Fe3+ ions. J Incl Phenom Macrocycl Chem 102, 893–903 (2022). https://doi.org/10.1007/s10847-022-01169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-022-01169-8

Keywords

Navigation