Log in

Microwave-assisted extraction of lipid and eicosapentaenoic acid from the microalga Nanochloropsis sp. using imidazolium-based ionic liquids as an additive in water

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This study employed 1-ethyl-3-methyl imidazolium chloride ([EMIM][Cl]) as an additive in an aqueous medium, combined with microwave-assisted extraction (IL-MAE), to extract total lipids and eicosapentaenoic acid (EPA) from the microalga Nannochloropsis sp. microalgae. The optimization process involved evaluating critical operating parameters, including the type of extraction solvent, solid-loading (i.e., water: microalgae ratio), extraction time, extraction temperature, and the IL/biomass ratio on the extraction of total lipids and as well as its EPA content. Under optimal conditions, IL-MAE significantly enhanced total lipid yield and EPA content by approximately 2.72 times and 8.1 times, respectively, compared to the traditional Soxhlet extraction. The standard Soxhlet procedure resulted in approximately 6.20% total lipids and 4.61 mg g-1 of EPA. Notably, with IL-MAE, the highest lipid and EPA yields were achieved. These reached 16.87% and 37.28 mg g-1, respectively, under optimal conditions: 90 °C for 25 min, using 2 w/w IL/biomass ratio, with 0.5 g of algae and a 3.3% w/v solid-loading. The obtained FAMEs through transesterification of total lipids exhibited high quality, comprising 37.94% wt polyunsaturated fatty acids (PUFAs). SEM and FTIR confirmed IL-MAE's superior lipid extraction by disrupting glycosidic linkages in the microalgal cell wall, resulting in a significantly higher yield than Soxhlet extraction. Repeated use of recycled [EMIM][Cl], tested up to four times, did not impact lipid and fatty acids recovery. Cost evaluation revealed that the IL-MAE approach for lipid production from Nannochloropsis sp. is more cost-efficient than the Soxhlet method, considering biomass, chemical and energy consumption. The enhanced extraction performance and accelerated rates of the IL-MAE system demonstrate its efficacy in extracting lipids, EPAs, and PUFAs from microalgae. Furthermore, it emphasizes sustainable, green, and efficient approach for extracting bioactive compounds, offering potential applications in the pharmaceutical and nutraceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Alam MA, Deng L, Ngatcha ADP, Fouegue ADT, Wu J, Zhang S, Zhao A, **ong W, Xu J (2023) Biodiesel production from microalgal biomass by Lewis acidic deep eutectic solvent catalysed direct transesterification. Indust Crops Products 206:117725

    Article  CAS  Google Scholar 

  • Ananthi V, Brindhadevi K, Pugazhendhi A, Arun A (2021) Impact of abiotic factors on biodiesel production by microalgae. Fuel 284:118962

    Article  CAS  Google Scholar 

  • Bajkacz S, Adamek J, Sobska A (2020) Application of deep eutectic solvents and ionic liquids in the extraction of catechins from tea. Molecules 25:3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barta DG, Coman V, Vodnar DC (2021) Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects. Algal Res 58:102410

    Article  Google Scholar 

  • Callejón MJJ, Medina AR, Sánchez MDM, Cerdán LE, Moreno PAG, López EN, Peña EH, Grima EM (2020) Obtaining highly pure EPA-rich lipids from dry and wet Nannochloropsis gaditana microalgal biomass using ethanol, hexane and acetone. Algal Res 45:101729

    Article  Google Scholar 

  • Castejón N, Señoráns FJ (2019) Simultaneous extraction and fractionation of omega-3 acylglycerols and glycolipids from wet microalgal biomass of Nannochloropsis gaditana using pressurized liquids. Algal Res 37:74–82

    Article  Google Scholar 

  • Chen W, Liu Y, Song L, Sommerfeld M, Hu Q (2020) Automated accelerated solvent extraction method for total lipid analysis of microalgae. Algal Res 51:102080

    Article  Google Scholar 

  • Choi S-A, Oh Y-K, Jeong M-J, Kim SW, Lee J-S, Park J-Y (2014) Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew Energy 65:169–174

    Article  CAS  Google Scholar 

  • de Jesus SS, Ferreira GF, Moreira LS, Maciel MRW, Maciel Filho R (2019) Comparison of several methods for effective lipid extraction from wet microalgae using green solvents. Renew Energy 143:130–141

    Article  Google Scholar 

  • Egesa D, Plucinski P (2022) Efficient extraction of lipids from magnetically separated microalgae using ionic liquids and their transesterification to biodiesel. Biomass Convers Biorefin 14:419–434

    Article  Google Scholar 

  • Elst K, Maesen M, Jacobs G, Bastiaens L, Voorspoels S, Servaes K (2018) Supercritical CO2 extraction of Nannochloropsis sp.: a lipidomic study on the influence of pretreatment on yield and composition. Molecules 23 (8):1854

  • Fan Y, Xu C, Li J, Zhang L, Yang L, Zhou Z, Zhu Y, Zhao D (2018) Ionic liquid-based microwave-assisted extraction of verbascoside from Rehmannia root. Indust Crops Products 124:59–65

    Article  CAS  Google Scholar 

  • Filote C, Santos SC, Popa VI, Botelho CM, Volf I (2021) Biorefinery of marine macroalgae into high-tech bioproducts: a review. Env Chem Lett 19:969–1000

    Article  CAS  Google Scholar 

  • Gog A, Şenilă L, Roman M, Luca E, Roman C, Irimie F-D (2012) Oil extraction and fatty acid characterization of Nannochloropsis oculata microalgae for biodiesel applications. Studia Universitatis Babes-Bolyai, Chemia 57:111–117

    CAS  Google Scholar 

  • Guckert JB, Cooksey KE, Jackson LL (1988) Lipid sovent systems are not equivalent for analysis of lipid classes in the microeukaryotic green alga Chlorella. J Microbiol Meth 8:139–149

    Article  CAS  Google Scholar 

  • Hui GT, Meng TK, Kassim MA (2023) Green ultrasonication-assisted extraction of microalgae Chlorella sp. for polysaturated fatty acid (PUFA) rich lipid extract using alternative solvent mixture. Bioproc Biosyst Eng 46:1499–1512

  • Ido AL, de Luna MDG, Capareda SC, Maglinao AL Jr, Nam H (2018) Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasound-assisted solvent extraction. Energy 157:949–956

    Article  CAS  Google Scholar 

  • Joshi DR, Adhikari N (2019) An overview on common organic solvents and their toxicity. J Pharm Res Int 28:1–18

    Article  Google Scholar 

  • Kaderides K, Papaoikonomou L, Serafim M, Goula AM (2019) Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem Eng Process - Process Intensif 137:1–11

    Article  CAS  Google Scholar 

  • Kanda H, Zhu L, Xu B, Kusumi K, Wang T (2024) Extraction of fucoxanthin, antioxidants and lipid from wet diatom Chaetoceros simplex var. calcitrans by liquefied dimethyl ether. Arab J Chem 17(2):105538

  • Kapoor B, Kapoor D, Gautam S, Singh R, Bhardwaj S (2021) Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Curr Nutr Rep 10:232–242

    Article  PubMed  Google Scholar 

  • Khan I, Hussain M, Jiang B, Zheng L, Pan Y, Hu J, Khan A, Ashraf A, Zou X (2023) Omega-3 long-chain polyunsaturated fatty acids: Metabolism and health implications. Progr Lipid Res 92:101255

    Article  CAS  Google Scholar 

  • Kiełbasa A, Buszewski B, Gadzała-Kopciuch R (2022) A novel non-derivatization HPLC/UV method for the determination of some n-3 free fatty acids in breast milk matrix. Microchem J 181:107789

    Article  Google Scholar 

  • Kim Y-H, Park S, Kim MH, Choi Y-K, Yang Y-H, Kim HJ, Kim H, Kim H-S, Song K-G, Lee SH (2013) Ultrasound-assisted extraction of lipids from Chlorella vulgaris using [Bmim][MeSO4]. Biomass Bioenergy 56:99–103

    Article  CAS  Google Scholar 

  • König-Mattern L, Komarova AO, Ghosh A, Linke S, Rihko-Struckmann LK, Luterbacher J, Sundmacher K (2023) High-throughput computational solvent screening for lignocellulosic biomass processing. Chem Eng J 452:139476

    Article  Google Scholar 

  • Kumar SJ, Banerjee R (2019) Enhanced lipid extraction from oleaginous yeast biomass using ultrasound assisted extraction: A greener and scalable process. Ultrason Sonochem 52:25–32

    Article  Google Scholar 

  • Lalman JA, Bagley DM (2004) Extracting long-chain fatty acids from a fermentation medium. J Am Oil Chem Soc 81:105–110

    Article  CAS  Google Scholar 

  • Li Y, Ghasemi Naghdi F, Garg S, Adarme-Vega TC, Thurecht KJ, Ghafor WA, Tannock S, Schenk PM (2014) A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Fact 13:14

  • Martins DA, Custódio L, Barreira L, Pereira H, Ben-Hamadou R, Varela J, Abu-Salah KM (2013) Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs 11:2259–2281

    Article  PubMed  PubMed Central  Google Scholar 

  • Masri AN, Mutalib MA, Yahya WZN, Aminuddin NF, Leveque JM (2020) Rapid esterification of fatty acid using dicationic acidic ionic liquid catalyst via ultrasonic-assisted method. Ultrason Sonochem 60:104732

    Article  CAS  PubMed  Google Scholar 

  • Mitra M, Mishra S (2019) A comparative analysis of different extraction solvent systems on the extractability of eicosapentaenoic acid from the marine eustigmatophyte Nannochloropsis oceanica. Algal Res 38:101387

    Article  Google Scholar 

  • Moretto JA, de Souza AO, Berneira LM, Brigagão LGG, de Pereira CMP, Converti A, Pinto E (2022) Microwave-assisted extraction of fatty acids from cultured and commercial phytoplankton species. Appl Sci 12:2407

    Article  CAS  Google Scholar 

  • Olkiewicz M, Caporgno MP, Font J, Legrand J, Lepine O, Plechkova NV, Pruvost J, Seddon KR, Bengoa C (2015) A novel recovery process for lipids from microalgæ for biodiesel production using a hydrated phosphonium ionic liquid. Green Chem 17:2813–2824

    Article  CAS  Google Scholar 

  • Olkiewicz M, Plechkova NV, Fabregat A, Stüber F, Fortuny A, Font J, Bengoa C (2015) Efficient extraction of lipids from primary sewage sludge using ionic liquids for biodiesel production. Separat Purif Technol 153:118–125

    Article  CAS  Google Scholar 

  • Orr VC, Plechkova NV, Seddon KR, Rehmann L (2016) Disruption and wet extraction of the microalgae Chlorella vulgaris using room-temperature ionic liquids. ACS Sustain Chem Eng 4:591–600

    Article  CAS  Google Scholar 

  • Ozogul Y, Şimşek A, BalIkçI E, Kenar M (2012) The effects of extraction methods on the contents of fatty acids, especially EPA and DHA in marine lipids. Int J Food Sci Nutr 63:326–331

    Article  CAS  PubMed  Google Scholar 

  • Palmieri S, Pellegrini M, Ricci A, Compagnone D, Lo Sterzo C (2020) Chemical composition and antioxidant activity of thyme, hemp and coriander extracts: A comparison study of maceration, Soxhlet. UAE and RSLDE techniques. Foods 9:1221

    CAS  PubMed  Google Scholar 

  • Pan J, Muppaneni T, Sun Y, Reddy HK, Fu J, Lu X, Deng S (2016) Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel 178:49–55

    Article  CAS  Google Scholar 

  • Rajan K, Elder T, Abdoulmoumine N, Carrier DJ, Labbé N (2020) Understanding the in situ state of lignocellulosic biomass during ionic liquids-based engineering of renewable materials and chemicals. Green Chem 22:6748–6766

    Article  CAS  Google Scholar 

  • Ramluckan K, Moodley KG, Bux F (2014) An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the Soxhlet extraction method. Fuel 116:103–108

    Article  CAS  Google Scholar 

  • Rezaei Motlagh S, Harun R, Awang Biak DR, Hussain SA, Ghani Wan Ab Karim, WA, Khezri R, Wilfred CD, Elgharbawy AA, (2019) Screening of suitable ionic liquids as green solvents for extraction of eicosapentaenoic acid (EPA) from microalgae biomass using COSMO-RS model. Molecules 24:713

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryckebosch E, Bermúdez SPC, Termote-Verhalle R, Bruneel C, Muylaert K, Parra-Saldivar R, Foubert I (2014) Influence of extraction solvent system on the extractability of lipid components from the biomass of Nannochloropsis gaditana. J Appl Phycol 26:1501–1510

    Article  CAS  Google Scholar 

  • Sati H, Mitra M, Mishra S, Baredar P (2019) Microalgal lipid extraction strategies for biodiesel production: A review. Algal Res 38:101413

    Article  Google Scholar 

  • Shankar M, Chhotaray PK, Agrawal A, Gardas RL, Tamilarasan K, Rajesh M (2017) Protic ionic liquid-assisted cell disruption and lipid extraction from fresh water Chlorella and Chlorococcum microalgae. Algal Res 25:228–236

    Article  Google Scholar 

  • Shin H-Y, Shim S-H, Ryu Y-J, Yang J-H, Lim S-M, Lee C-G (2018) Lipid extraction from Tetraselmis sp. microalgae for biodiesel production using hexane-based solvent mixtures. Biotech Bioproc Eng 23:16–22

    Article  CAS  Google Scholar 

  • Stramarkou M, Oikonomopoulou V, Chalima A, Boukouvalas C, Topakas E, Krokida M (2021) Optimization of green extractions for the recovery of docosahexaenoic acid (DHA) from Crypthecodinium cohnii. Algal Res 58:102374

    Article  Google Scholar 

  • Taher H, Giwa A, Abusabiekeh H, Al-Zuhair S (2020) Biodiesel production from Nannochloropsis gaditana using supercritical CO2 for lipid extraction and immobilized lipase transesterification: Economic and environmental impact assessments. Fuel Process Technol 198:106249

    Article  CAS  Google Scholar 

  • Tang W, Row KH (2020) Evaluation of CO2-induced azole-based switchable ionic liquid with hydrophobic/hydrophilic reversible transition as single solvent system for coupling lipid extraction and separation from wet microalgae. Bioresour Technol 296:122309

    Article  CAS  PubMed  Google Scholar 

  • Vasistha S, Khanra A, Clifford M, Rai MP (2021) Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review. Renew Sustain Energy Rev 137:110498

    Article  CAS  Google Scholar 

  • Wahidin S, Idris A, Yusof NM, Kamis NHH, Shaleh SRM (2018) Optimization of the ionic liquid-microwave assisted one-step biodiesel production process from wet microalgal biomass. Energy Convers Manage 171:1397–1404

    Article  CAS  Google Scholar 

  • Wang D, Gao X, Wang X, Yuan X, Guo X, Zhang Y, Xu K, Li Z (2023) Diverse thermal responses of the growth, photosynthesis, lipid and fatty acids in the terrestrial oil-producing microalga Vischeria sp. WL1. J Appl Phycol 36:29–39

    Article  Google Scholar 

  • Young G, Nippgen F, Titterbrandt S, Cooney MJ (2010) Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Separat Purificat Technol 72:118–121

    Article  CAS  Google Scholar 

  • Zanella L, Vianello F (2020) Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition. J Funct Foods 68:103919

    Article  CAS  Google Scholar 

  • Zghaibi N, Omar R, Mustapa Kamal SM, Awang Biak DR, Harun R (2020) Kinetics study of microwave-assisted brine extraction of lipid from the microalgae Nannochloropsis sp. Molecules 25:784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, ** W, Tu R, Guo Q, Han S-f, Chen C, Wang Q, Liu W, Jensen PD, Wang Q (2019) Optimization of microwave assisted lipid extraction from microalga Scenedesmus obliquus grown on municipal wastewater. J Cleaner Product 221:502–508

    Article  CAS  Google Scholar 

Download references

Acknowledgement

S.R.M. thanks Chulalongkorn Academic Advancement into its Second Century Fund (C2F), for Postdoctoral Fellowship. The authors are grateful for the support of University Putra Malaysia (UPM) for providing the equipment and research facilities to perform this project.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

S.R.M., R.H. and K.N. proposed the research idea. S.R.M. expanded the idea and designed the experiments. S.R.M. carried out the experiments. S.R.M., R.H., and K.N. analyzed and discussed the results. S.R.M., R.K., M.E., C.Y.C, K.N., S.K. and R.H. review and editing. S.R.M. prepared the manuscript. All authors commented and revised the manuscript.

Corresponding authors

Correspondence to Kasidit Nootong or Razif Harun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motlagh, S.R., Khezri, R., Etesami, M. et al. Microwave-assisted extraction of lipid and eicosapentaenoic acid from the microalga Nanochloropsis sp. using imidazolium-based ionic liquids as an additive in water. J Appl Phycol (2024). https://doi.org/10.1007/s10811-024-03244-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10811-024-03244-8

Keywords

Navigation