Log in

Efficient extraction of lipids from magnetically separated microalgae using ionic liquids and their transesterification to biodiesel

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this work, the efficiency of extracting lipids from magnetically separated microalgae using ionic liquids (ILs) with subsequent recycling of ILs and magnetic nanoparticles (MNPs) was fully demonstrated for the first time. MNPs were used to separate microalgae from the aqueous phase at a separation efficiency of 99%. The separated microalgae/MNPs slurry was subjected to IL treatment to lyse the microalgae cell wall thereby exposing lipids for efficient solvent extraction using hexane. The lysed cells were mixed with hexane for 2 h to extract the lipids. The extraction efficiency of 99% was achieved when ILs/hexane was used compared to only 5% with hexane only. The extracted lipids were analyzed using gas chromatography-mass spectrometry (GC–MS), Fourier-transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance (1H NMR). These then were transesterified to biodiesel. The MNPs were recovered from cell biomass by sonicating in de-ionized (DI) water and recycled via magnetic separation to harvest more microalgae at a separation efficiency of 96%. Thermogravimetric analysis (TGA) of recycled MNPs confirmed the absence of algal biomass attached to the particles. The ILs were also recycled and analyzed using 1H NMR, mass spectrometry, and FT-IR analysis. All these confirmed the absence of structural alteration in the recycled ILs. Magnetic separation can potentially lower the cost of microalgae harvesting and IL extraction can lower the cost of lipid extraction by 30–50%. A combination of the two processes implies that the extraction of lipids from magnetically separated microalgae could potentially lower the processing cost of biofuels and essential compounds. Recycling MNPs and ILs and extraction of essential compounds alongside microalgae lipids could further lower the processing costs potentially culminating in a lower cost of biofuels compared to petroleum-derived fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

FAME:

Fatty acid methyl esters

HTL:

Hydrothermal liquefaction

ILs:

Ionic liquids

DI:

De-ionized water

MNPs:

Magnetic nanoparticles

References

  1. Orr VC, Plechkova NV, Seddon KR, Rehmann L (2015) Disruption and wet extraction of the microalgae Chlorella vulgaris using room-temperature ionic liquids. ACS Sustain Chem Eng 4:591–600

    Article  Google Scholar 

  2. Siddiki SYA, Mofijur M, Kumar PS, Ahmed SF, Inayat A, Kusumo F et al (2022) Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: an integrated biorefinery concept. Fuel 307:121782

    Article  Google Scholar 

  3. Egesa D, Chuck CJ, Plucinski P (2017) Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustain Chem Eng 6:991–999

    Article  Google Scholar 

  4. Safarik I, Prochazkova G, Pospiskova K, Branyik T (2016) Magnetically modified microalgae and their applications. Crit Rev Biotechnol 36:931–941

    Article  Google Scholar 

  5. Teixeira RE (2012) Energy-efficient extraction of fuel and chemical feedstocks from algae. Green Chem 14:419–427

    Article  Google Scholar 

  6. Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14:2596–2610

    Article  Google Scholar 

  7. Boli E, Savvidou M, Logothetis D, Louli V, Pappa G, Voutsas E et al (2021) Magnetic harvesting of marine algae Nannochloropsis oceanica. Sep Sci Technol 56:730–737

    Article  Google Scholar 

  8. Li X, Liu B, Lao Y, Wan P, Mao X, Chen F (2021) Efficient magnetic harvesting of microalgae enabled by surface-initiated formation of iron nanoparticles. Chem Eng J 408:127252

    Article  Google Scholar 

  9. Markeb AA, Llimós-Turet J, Ferrer I, Blánquez P, Alonso A, Sánchez A et al (2019) The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res 159:490–500

    Article  Google Scholar 

  10. Almomani F (2020) Algal cells harvesting using cost-effective magnetic nano-particles. Sci Total Environ 720:137621

    Article  Google Scholar 

  11. Bharte S, Desai K (2019) Harvesting Chlorella species using magnetic iron oxide nanoparticles. Phycol Res 67:128–133

    Article  Google Scholar 

  12. Prochazkova G, Podolova N, Safarik I, Zachleder V, Branyik T (2013) Physicochemical approach to freshwater microalgae harvesting with magnetic particles. Colloids Surf, B 112:213–218

    Article  Google Scholar 

  13. Kothari R, Tyagi VV, Pathak VV (2020) Algal biofuel. The Energy and Resources Institute (TERI), Mithapur

    Google Scholar 

  14. Allnutt FT, Kessler BA (2015) Harvesting and downstream processing—and their economics. Biomass and Biofuels from Microalgae. Springer, Berlin, pp 289–310

    Chapter  Google Scholar 

  15. Prochazkova G, Safarik I, Branyik T (2013) Harvesting microalgae with microwave synthesized magnetic microparticles. Biores Technol 130:472–477

    Article  Google Scholar 

  16. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701

    Article  Google Scholar 

  17. Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121

    Article  Google Scholar 

  18. Grøgaard HC (2011) Extraction and analysis of marine lipids with emphasis on phospholipids-evaluation and improvement of methods. Institutt for bioteknologi

  19. Medina AR, Grima EM, Giménez AG, González MI (1998) Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 16:517–580

    Article  Google Scholar 

  20. Grima EM, González MJI, Giménez AG (2013) Solvent extraction for microalgae lipids. Algae for biofuels and energy. Springer, Berlin, pp 187–205

    Chapter  Google Scholar 

  21. Kapoore R, Butler T, Pandhal J, Vaidyanathan S (2018) Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology 7:18

    Article  Google Scholar 

  22. Theegala CS (2015) Algal cell disruption and lipid extraction: a review on current technologies and limitations. Algal biorefineries. pp 419–441

    Chapter  Google Scholar 

  23. Al Hattab M, Ghaly A, Hammouda A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5:1000154

    Article  Google Scholar 

  24. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  Google Scholar 

  25. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  Google Scholar 

  26. Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 4:3913–3929

    Article  Google Scholar 

  27. Earle MJ, Esperança JM, Gilea MA, Lopes JNC, Rebelo LP, Magee JW et al (2006) The distillation and volatility of ionic liquids. Nature 439:831

    Article  Google Scholar 

  28. Wishart JF (2009) Energy applications of ionic liquids. Energy Environ Sci 2:956–961

    Article  Google Scholar 

  29. Tian M, Fang L, Yan X, **ao W, Row KH (2019) Determination of heavy metal ions and organic pollutants in water samples using ionic liquids and ionic liquid-modified sorbents. J Anal Meth Chem 2019:1

    Article  Google Scholar 

  30. Merone GM, Tartaglia A, Rosato E, D’Ovidio C, Kabir A, Ulusoy HI et al (2021) Ionic liquids in analytical chemistry: applications and recent trends. Curr Anal Chem 17:1340–1355

    Article  Google Scholar 

  31. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Biores Technol 100:2580–2587

    Article  Google Scholar 

  32. Kadokawa R, Endo T, Yasaka Y, Ninomiya K, Takahashi K, Kuroda K (2021) Cellulose preferentially dissolved over xylan in ionic liquids through precise anion interaction regulated by bulky cations. ACS Sustain Chem Eng 9:8686–8691

    Article  Google Scholar 

  33. Mazza M, Catana D-A, Vaca-Garcia C, Cecutti C (2009) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215

    Article  Google Scholar 

  34. Egesa D, Mulindwa P, Mubiru E, Kyomuhimbo HD, Aturagaba G (2021) Hydrothermal liquefaction of water hyacinth: effect of process conditions and magnetite nanoparticles on biocrude yield and composition. J Sustain Bioenergy Syst 11:157–186

    Article  Google Scholar 

  35. Egesa D, Chuck CJ, Plucinski P (2018) Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustain Chem Eng 6:991–999

    Article  Google Scholar 

  36. Shankar M, Chhotaray PK, Agrawal A, Gardas RL, Tamilarasan K, Rajesh M (2017) Protic ionic liquid-assisted cell disruption and lipid extraction from fresh water Chlorella and Chlorococcum microalgae. Algal Res 25:228–236

    Article  Google Scholar 

  37. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  Google Scholar 

  38. Christie WW (1973) Lipid analysis, vol 167. Pergamon press, Oxford

    Google Scholar 

  39. Duvekot C (2019) Determination of total FAME and linoleic acid methyl esters in biodiesel according to EN-14103

  40. Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. ACS Publications, Washington DC

    Book  Google Scholar 

  41. Yoo G, Park W-K, Kim CW, Choi Y-E, Yang J-W (2012) Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock. Biores Technol 123:717–722

    Article  Google Scholar 

  42. Olkiewicz M, Caporgno MP, Font J, Legrand J, Lepine O, Plechkova NV et al (2015) A novel recovery process for lipids from microalgæ for biodiesel production using a hydrated phosphonium ionic liquid. Green Chem 17:2813–2824

    Article  Google Scholar 

  43. Fujita K, Kobayashi D, Nakamura N, Ohno H (2013) Direct dissolution of wet and saliferous marine microalgae by polar ionic liquids without heating. Enzyme Microb Technol 52:199–202

    Article  Google Scholar 

  44. Choi S-A, Oh Y-K, Jeong M-J, Kim SW, Lee J-S, Park J-Y (2014) Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew Energy 65:169–174

    Article  Google Scholar 

  45. Young G, Nippgen F, Titterbrandt S, Cooney MJ (2010) Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 72:118–121

    Article  Google Scholar 

  46. Yoo B, **g B, Jones SE, Lamberti GA, Zhu Y, Shah JK et al (2016) Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach. Sci Rep 6:19889

    Article  Google Scholar 

  47. Weerachanchai P, Chen Z, Leong SSJ, Chang MW, Lee J-M (2012) Hildebrand solubility parameters of ionic liquids: effects of ionic liquid type, temperature and DMA fraction in ionic liquid. Chem Eng J 213:356–362

    Article  Google Scholar 

  48. Fink JK (2013) Unsaturated polyester resins. Reactive Polymers Fundamentals and Applications. Elsevier, Amsterdam, pp 1–48

    Google Scholar 

  49. Swiderski K, McLean A, Gordon CM, Vaughan DH (2004) Estimates of internal energies of vaporisation of some room temperature ionic liquids. Chem Commun 19:2178–2179

    Article  Google Scholar 

  50. Zhao D, Wu M, Kou Y, Min E (2002) Ionic liquids: applications in catalysis. Catal Today 74:157–189

    Article  Google Scholar 

  51. Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) “Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13 C and 35/37 Cl NMR relaxation study on model systems. Chem Commun 12:1271–1273

    Article  Google Scholar 

  52. Al Hattab M, Ghaly A, Hammoud A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5:1000154

    Article  Google Scholar 

  53. Ab Rani M, Brant A, Crowhurst L, Dolan A, Lui M, Hassan NH et al (2011) Understanding the polarity of ionic liquids”. Phys Chem Chem Phys 13:16831–16840

    Article  Google Scholar 

  54. Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46

    Article  Google Scholar 

  55. Balasubramanian RK, Doan TTY, Obbard JP (2013) Factors affecting cellular lipid extraction from marine microalgae. Chem Eng J 215:929–936

    Article  Google Scholar 

  56. Kim Y-H, Park S, Kim MH, Choi Y-K, Yang Y-H, Kim HJ et al (2013) Ultrasound-assisted extraction of lipids from Chlorella vulgaris using [Bmim][MeSO4]. Biomass Bioenerg 56:99–103

    Article  Google Scholar 

  57. Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732

    Article  Google Scholar 

  58. Sarpal A, Costa I, Teixeira C, Filocomo D, Candido R (2016) Investigation of biodiesel potential of biomasses of microalgaes Chlorella, Spirulina and Tetraselmis by NMR and GC-MS techniques. J Biotechnol Biomater 6:2

    Google Scholar 

  59. Pistorius AM, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103:123–129

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the British Government through the Commonwealth Scholarship Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Egesa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 540 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egesa, D., Plucinski, P. Efficient extraction of lipids from magnetically separated microalgae using ionic liquids and their transesterification to biodiesel. Biomass Conv. Bioref. 14, 419–434 (2024). https://doi.org/10.1007/s13399-022-02377-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02377-5

Keywords

Navigation