Log in

Phytohormonal impacts on fatty acid profiles in Chlorella vulgaris Beijerinck: endogenous identification and exogenous application of cytokinins and abscisic acid

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Chlorella vulgaris has a high lipid content with potential for biofuel application. With a rapid growth cycle and ease of culture, it is well suited for observing lipid profile changes and connecting this with phytohormone responses at a cellular level. The present study profiled C. vulgaris endogenous phytohormone levels in nutrient rich media and determined how exogenous phytohormone application affected its lipid metabolism. Endogenous phytohormone profiling using high-resolution liquid chromatography-tandem mass spectrometry revealed methylthiolated cytokinins as the most dominant cytokinin form produced. The impact of exogenous benzyladenine, trans-zeatin, 2-methylthio-trans-zeatin, and abscisic acid at three concentrations (10–7, 10–6 and 10–5 M) was assessed using daily growth monitoring via optical density (OD680). Extraction and assessment of total lipid content followed the Soxhlet method, and fatty acid measurements of five fatty acids (α-linolenic, linoleic, palmitic, oleic, and stearic acids) was done using gas chromatography equipped with a flame ionization detector. Growth stimulation was the highest at 10–6 M for all exogenous phytohormones except trans-zeatin, which was most effective at 10–5 M. All exogenous treatments caused changes in fatty acid methyl ester (FAME) content, especially benzyladenine at 10–6 M. For α-linolenic acid, the most significant change occurred with the addition of 10–7 and 10–6 M 2-methylthio-trans-zeatin, resulting in its increased production by 141% and 381%, respectively. This is the first report of 2-methylthio-trans-zeatin supplementation in microalgal cultures to date. The results presented suggest that using 2-methylthio-trans-zeatin exogenously can enhance α-linolenic acid production for pharmaceutical or industrial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All relevant data generated or analyzed during this study are included in this published article, and supplemental information. Other raw data will be available upon request.

References

  • Anand G, Gupta R, Marash I, Leibman-Markus M, Bar M (2022) Cytokinin production and sensing in fungi. Microbiol Res 262:127103

    Article  CAS  PubMed  Google Scholar 

  • Andreas P, Kisiala A, Emery RJN, De Clerck-Floate R, Tooker JF, Price PW, Miller Iii DG, Chen MS, Connor EF (2020) Cytokinins are abundant and widespread among insect species. Plants 9:208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki MM, Kisiala AB, Li S, Stock NL, Brunetti CR, Huber RJ, Emery RJN (2019a) Cytokinin detection during the Dictyostelium discoideum life cycle: Profiles are dynamic and affect cell growth and spore germination. Biomolecules 9:702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki MM, Seegobin M, Kisiala A, Noble A, Brunetti C, Emery RJN (2019b) Phytohormone metabolism in human cells: Cytokinins are taken up and interconverted in HeLa cell culture. FASEB Bioadv 1:320–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barciszewski J, Siboska G, Clark BFC, Rattan SIS (2000) Cytokinin formation by oxidative metabolism. J Plant Physiol 157:587–588

    Article  CAS  Google Scholar 

  • Bischoff HW, Bold HC (1963) Phycological Studies IV. Some soil algae from Enchanted Rock and related algal species. University of Texas Publication No. 6318, p 95

  • Chu J, Li Y, Cui Y, Qin S (2018) The influences of phytohormones on triacylglycerol accumulation in an oleaginous marine diatom Phaeodactylum tricornutum. J Appl Phycol 31:1009–1019

    Article  Google Scholar 

  • Cruz CG, da Rosa APC, Costa JAV (2023) Identification of the phytohormones indole-3-acetic acid and trans-zeatin in microalgae. J Chem Technol Biotechnol 98:1048–1056

    Article  CAS  Google Scholar 

  • da Silveira JT, da Rosa APC, Costa JAV (2021) Modulating phytohormone supplementation can efficiently increase biomass and lipid production in Spirulina (Arthrospira). Bioenergy Res 15:112–120

    Article  Google Scholar 

  • Dao G-H, Wang X-X, Zhang T-Y, Wu G-X, Zhan X-M, Hu H-Y (2019) Enhanced biomass production and fatty acid accumulation in Scenedesmus sp. LX1 treated with 6-benzylaminopurine. Algal Res 44:101714

  • Do TCV, Tran DT, Le TG, Nguyen QT (2020) Characterization of endogenous auxins and gibberellins produced by Chlorella sorokiniana TH01 under phototrophic and mixtrophic cultivation modes toward applications in microalgal biorefinery and crop research. J Chem 2020:1-11

  • Du H, Ahmed F, Lin B, Li Z, Huang Y, Sun G, Ding H, Wang C, Meng C, Gao Z (2017) The effects of plant growth regulators on cell growth, protein, carotenoid, PUFAs and lipid production of Chlorella pyrenoidosa ZF strain. Energies 10:1696

    Article  Google Scholar 

  • Du H, Ren J, Li Z, Zhang H, Wang K, Lin B, Zheng S, Zhao C, Meng C, Gao Z (2020) Plant growth regulators affect biomass, protein, carotenoid, and lipid production in Botryococcus braunii. Aquac Int 28:1319–1340

    Article  CAS  Google Scholar 

  • Dunne A, Maple-Grødem J, Gargano D, Haslam RP, Napier JA, Chua N-H, Russell R, Møller SG (2014) Modifying fatty acid profiles through a new cytokinin-based plastid transformation system. Plant J 80:1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Farrow SC, Emery RN (2012) Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry. Plant Methods 8:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frébort I, Kowalska M, Hluska T, Frebortova J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452

    Article  PubMed  Google Scholar 

  • Gajdošová S, Spichal L, Kaminek M, Hoyerova K, Novak O, Dobrev PI, Galuszka P, Klima P, Gaudinova A, Zizkova E, Hanus J, Dancak M, Travnicek B, Pesek B, Krupicka M, Vankova R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840

    Article  PubMed  Google Scholar 

  • Gibb M, Kisiala AB, Morrison EN, Emery RJN (2020) The origins and roles of methylthiolated cytokinins: Evidence from among life Kingdoms. Front Cell Dev Biol 8:605672

    Article  PubMed  PubMed Central  Google Scholar 

  • Han S-F, ** W, Abomohra AE-F, Zhou X, Tu R, Chen C, Chen H, Gao S-h, Wang Q (2018a) Enhancement of lipid production of Scenedesmus obliquus cultivated in municipal wastewater by plant growth regulator treatment. Waste Biomass Valoriz 10:2479–2485

    Article  Google Scholar 

  • Han X, Zeng H, Bartocci P, Fantozzi F, Yan Y (2018b) Phytohormones and effects on growth and metabolites of microalgae: A review. Fermentation 4:25

    Article  Google Scholar 

  • Hernandez LR, Mendiola MA, Castro CA, Gutierrez-Miceli FA (2015) Effect of plant growth regulators on fatty acids composition in Jatropha curcas L. callus culture. J Oleo Sci 64:325–330

  • Hluska T, Hluskova L, Emery RJN (2021) The hulks and the deadpools of the cytokinin universe: A dual strategy for cytokinin production, translocation, and signal transduction. Biomolecules 11:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jirásková D, Poulickova A, Novak O, Sedlakova K, Hradecka V, Strnad M (2009) High-throughput screening technology for monitoring phytohormone production in microalgae. J Phycol 45:108–118

    Article  PubMed  Google Scholar 

  • Ju Z, Ding L, Li K, Ding Z, Zhang Q, Li Y (2013) Effects of plant growth substances on biomass and lipid production in diatoms. Int J Environ Sci Dev 4:452–455

    Article  CAS  Google Scholar 

  • Kiseleva AA, Tarachovskaya ER, Shishova MF (2012) Biosynthesis of phytohormones in algae. Russ J Plant Physiol 59:595–610

    Article  CAS  Google Scholar 

  • Kisiala A, Kambhampati S, Stock NL, Aoki M, Emery RJN (2019) Quantification of cytokinins using high-resolution accurate-mass orbitrap mass spectrometry and parallel reaction monitoring (PRM). Anal Chem 91:15049–15056

    Article  CAS  PubMed  Google Scholar 

  • Kisiala A, Laffont C, Emery RJ, Frugier F (2013) Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains. Mol Plant Microbe Interact 26:1225–1231

    Article  CAS  PubMed  Google Scholar 

  • Kokkiligadda S, Pandey B, Ronda SR (2017) Effect of plant growth regulators on production of alpha-linolenic acid from microalgae Chlorella pyrenoidosa. Sādhanā 42:1821–1824

    Article  CAS  Google Scholar 

  • Kozlova TA, Hardy BP, Krishna P, Levin DB (2017) Effect of phytohormones on growth and accumulation of pigments and fatty acids in the microalgae Scenedesmus quadricauda. Algal Res 27:325–334

    Article  Google Scholar 

  • Kozlova TA, Kartashov AV, Zadneprovskaya E, Krapivina A, Zaytsev P, Chivkunova OB, Solovchenko AE (2023) Effect of abscisic acid on growth, fatty acid profile, and pigment composition of the chlorophyte Chlorella (Chromochloris) zofingiensis and its co-culture microbiome. Life 13:452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kull U, Kühn B, Schweizer J, Weiser H (1978) Short-term effects of cytokinins on the lipid fatty acids of green leaves. Plant Cell Physiol 19:801–810

    Article  CAS  Google Scholar 

  • Liu J, Qiu W, Song Y (2016) Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda. Algal Res 18:273–280

    Article  Google Scholar 

  • Liu T, Liu F, Wang C, Wang Z, Li Y (2017) The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs. Bioresour Technol 232:44–52

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Xu J (2015) Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci 20:273–282

    Article  CAS  PubMed  Google Scholar 

  • Morrison EN, Emery RJ, Saville BJ (2015) Phytohormone Involvement in the Ustilago maydis - Zea mays pathosystem: Relationships between abscisic acid and cytokinin levels and strain virulence in infected cob tissue. PLoS One 10:e0130945

    Article  PubMed  PubMed Central  Google Scholar 

  • Mousavi P, Montazeri-Najafabady N, Abolhasanzadeh Z, Mohagheghzadeh A, Hamidi M, Niazi A, Morowvat MH, Ghasemi Y (2016) Investigating the effects of phytohormones on growth and beta-carotene production in a naturally isolates stain of Dunaliella salina. J Appl Pharm Sci 6:164–171

  • Nedved D, Hosek P, Klima P, Hoyerova K (2021) Differential subcellular distribution of cytokinins: How does membrane transport fit into the big picture? Int J Mol Sci 22:3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HN, Nguyen TQ, Kisiala AB, Emery RJN (2021a) Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. Planta 254:45

    Article  CAS  PubMed  Google Scholar 

  • Nguyen QT, Kisiala A, Andreas P, Emery RJN, Narine S (2016) Soybean seed development: Fatty acid and phytohormone metabolism and their interactions. Curr Genomics 17:241–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TQ, Kisiala AB, Hai NN, Narine S, Emery RJN (2021b) Phytohormone dynamics impact fatty acid and oil accumulation during soybean seed maturation. Seed Sci Res 31:278–291

    Article  CAS  Google Scholar 

  • Noble A, Kisiala A, Galer A, Clysdale D, Emery RJN (2014) Euglena gracilis (Euglenophyceae) produces abscisic acid and cytokinins and responds to their exogenous application singly and in combination with other growth regulators. Eur J Phycol 49:244–254

    Article  CAS  Google Scholar 

  • Norlina R, Norashikin MN, Loh SH, Aziz A, Cha TS (2020) Exogenous abscisic acid supplementation at early stationary growth phase triggers changes in the regulation of fatty acid biosynthesis in Chlorella vulgaris UMT-M1. Appl Biochem Biotechnol 191:1653–1669

    Article  CAS  PubMed  Google Scholar 

  • Ördög V, Stirk WA, Van Staden J, Novák O, Strnad M (2004) Endogenous cytokinins in three genera of microalgae from the Chlorophyta. J Phycol 40:88–95

    Article  Google Scholar 

  • Palberg D, Kisiala A, Jorge GL, Emery RJN (2022) A survey of Methylobacterium species and strains reveals widespread production and varying profiles of cytokinin phytohormones. BMC Microbiol 22:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park WK, Yoo G, Moon M, Kim CW, Choi YE, Yang JW (2013) Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl Biochem Biotechnol 171:1128–1142

    Article  CAS  PubMed  Google Scholar 

  • Pertry I, Vaclavikova K, Depuydt S, Galuszka P, Spichal L, Temmerman W, Stes E, Schmulling T, Kakimoto T, Van Montagu MC, Strnad M, Holsters M, Tarkowski P, Vereecke D (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci USA 106:929–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichler G, Stoggl W, Candotto Carniel F, Muggia L, Ametrano CG, Holzinger A, Tretiach M, Kranner I (2020) Abundance and extracellular release of phytohormones in aero-terrestrial microalgae (Trebouxiophyceae, Chlorophyta) as a potential chemical signaling source. J Phycol 56:1295–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piotrowska A, Czerpak R (2009) Cellular response of light/dark-grown green alga Chlorella vulgaris Beijerinck (Chlorophyceae) to exogenous adenine- and phenylurea-type cytokinins. Acta Physiol Plant 31:573–585

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Kotowska U, Bralska M, Talarek-Karwel M (2018) Growth, metabolite profile, oxidative status, and phytohormone levels in the green alga Acutodesmus obliquus exposed to exogenous auxins and cytokinins. J Plant Growth Regul 37:1159–1174

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Kotowska U, Zambrzycka-Szelewa E, Sienkiewicz A (2020) Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxification in the green alga Acutodesmus obliquus exposed to lead stress. Sci Rep 10:10193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quesnelle PE, Emery RJN (2007) cis-Cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can J Bot 85:91–103

    Article  Google Scholar 

  • Radhika V, Ueda N, Tsuboi Y, Kojima M, Kikuchi J, Kudo T, Sakakibara H (2015) Methylated cytokinins from the phytopathogen Rhodococcus fascians mimic plant hormone activity. Plant Physiol 169:1118–1126

    Article  PubMed  PubMed Central  Google Scholar 

  • Renuka N, Guldhe A, Singh P, Ansari FA, Rawat I, Bux F (2017) Evaluating the potential of cytokinins for biomass and lipid enhancement in microalga Acutodesmus obliquus under nitrogen stress. Energy Convers Manag 140:14–23

    Article  CAS  Google Scholar 

  • Renuka N, Guldhe A, Singh P, Bux F (2018) Combined effect of exogenous phytohormones on biomass and lipid production in Acutodesmus obliquus under nitrogen limitation. Energy Convers Manag 168:522–528

    Article  CAS  Google Scholar 

  • Sakakibara H (2006) Cytokinins: Activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  CAS  PubMed  Google Scholar 

  • Salama ES, Kabra AN, Ji MK, Kim JR, Min B, Jeon BH (2014) Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour Technol 172:97–103

    Article  CAS  PubMed  Google Scholar 

  • Seegobin M, Kisiala A, Noble A, Kaplan D, Brunetti C, Emery RJN (2018) Canis familiaris tissues are characterized by different profiles of cytokinins typical of the tRNA degradation pathway. FASEB J 32:6575–6581

    Article  CAS  Google Scholar 

  • Seemashree MH, Chauhan VS, Sarada R (2022) Phytohormone supplementation mediated enhanced biomass production, lipid accumulation, and modulation of fatty acid profile in Porphyridium purpureum and Dunaliella salina cultures. Biocatal Agric Biotechnol 39:102253

    Article  CAS  Google Scholar 

  • Shah S, Li X, Jiang Z, Fahad S, Hassan S (2022) Exploration of the phytohormone regulation of energy storage compound accumulation in microalgae. Food Energy Secur 11:e418

    Article  CAS  Google Scholar 

  • Šimura J, Antoniadi I, Siroka J, Tarkowska D, Strnad M, Ljung K, Novak O (2018) Plant hormonomics: Multiple phytohormone profiling by targeted metabolomics. Plant Physiol 177:476–489

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh J, Jain D, Agarwal P, Singh RP (2020) Auxin and cytokinin synergism augmenting biomass and lipid production in microalgae Desmodesmus sp. JS07. Process Biochem 95:223–234

    Article  CAS  Google Scholar 

  • Sivaramakrishnan R, Incharoensakdi A (2020) Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids. Biotechnol Biofuels 13:7

  • Stirk WA, Balint P, Tarkowska D, Novak O, Maroti G, Ljung K, Tureckova V, Strnad M, Ordog V, van Staden J (2014) Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiol Biochem 79:66–76

    Article  CAS  PubMed  Google Scholar 

  • Stirk WA, Ordog V, Novak O, Rolcik J, Strnad M, Balint P, van Staden J (2013) Auxin and cytokinin relationships in 24 microalgal strains. J Phycol 49:459–467

    Article  CAS  PubMed  Google Scholar 

  • Stirk WA, van Staden J (2020) Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol Adv 44:107612

    Article  CAS  PubMed  Google Scholar 

  • Stirk WA, van Staden J, Novak O, Dolezal K, Strnad M, Dobrev PI, Sipos G, Ordog V, Balint P (2011) Changes in endogenous cytokinin concentrations in Chlorella (Chlorophyceae) in relation to light and the cell cycle. J Phycol 47:291–301

    Article  CAS  PubMed  Google Scholar 

  • Sulochana SB, Arumugam M (2016) Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresour Technol 213:198–203

    Article  CAS  PubMed  Google Scholar 

  • Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170

    Article  CAS  Google Scholar 

  • Tarkowski P, Vaclavikova K, Novak O, Pertry I, Hanus J, Whenham R, Vereecke D, Sebela M, Strnad M (2010) Analysis of 2-methylthio-derivatives of isoprenoid cytokinins by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 680:86–91

    Article  CAS  PubMed  Google Scholar 

  • Uprety BK, Morrison EN, Emery RJN, Farrow SC (2022) Customizing lipids from oleaginous microbes: leveraging exogenous and endogenous approaches. Trends Biotechnol 40:482–508

    Article  CAS  PubMed  Google Scholar 

  • Vijay AK, Salim SAM, Prabha S, George B (2021) Exogenous carbon source and phytohormone supplementation enhanced growth rate and metabolite production in freshwater microalgae Scenedesmus obtusus Meyen. Bioresour Technol Rep 14:100669

    Article  CAS  Google Scholar 

  • Wang C, Qi M, Guo J, Zhou C, Yan X, Ruan R, Cheng P (2021) The active phytohormone in microalgae: The characteristics, efficient detection, and their adversity resistance applications. Molecules 27:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams PJlB, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554

  • **e Z, Ma S, Cao Y, Peng S, Zhang X, Kong W (2023) Effects of six phytohormones on the growth behavior and cellular biochemical components of Chlorella vulgaris 31. J Appl Phycol 35:1589–1602

    Article  CAS  Google Scholar 

  • Yu XJ, Chen H, Huang CY, Zhu XY, Wang ZP, Wang DS, Liu XY, Sun J, Zheng JY, Li HJ, Wang Z (2019) Transcriptomic mechanism of the phytohormone 6-benzylaminopurine (6-BAP) stimulating lipid and DHA synthesis in Aurantiochytrium sp. J Agric Food Chem 67:5560–5570

    Article  CAS  PubMed  Google Scholar 

  • Zapata D, Arroyave C, Cardona L, Aristizabal A, Poschenrieder C, llugany M, (2021) Phytohormone production and morphology of Spirulina platensis grown in dairy wastewaters. Algal Res 59:102469

    Article  Google Scholar 

  • Zhang B, Chen J, Su Y, Sun W, Zhang A (2021) Utilization of indole-3-acetic acid–secreting bacteria in algal environment to increase biomass accumulation of Ochromonas and Chlorella. Bioenergy Res 15:242–252

    Article  Google Scholar 

  • Zhang H, Guiguet A, Dubreuil G, Kisiala A, Andreas P, Emery RJN, Huguet E, Body M, Giron D (2017) Dynamics and origin of cytokinins involved in plant manipulation by a leaf-mining insect. Insect Sci 24:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Yin W, Ma D, Liu X, Xu K, Liu J (2020) Phytohormone supplementation significantly increases fatty acid content of Phaeodactylum tricornutum in two-phase culture. J Appl Phycol 33:13–23

    Article  Google Scholar 

  • Zhu Z, Sun J, Fa Y, Liu X, Lindblad P (2022) Enhancing microalgal lipid accumulation for biofuel production. Front Microbiol 13:1024441

    Article  PubMed  PubMed Central  Google Scholar 

  • Žižková E, Kubeš M, Dobrev PI, Přibyl P, Šimura J, Zahajská L, Drábková LZ, Novák O, Motyka V (2017) Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Ann Bot 119:151–166

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Natural Sciences and Engineering Research Council for financial support for this project. The Ontario Research Fund and the Canadian Foundation for Innovation provided funding to purchase mass spectrometers and other instrumentation in the Water Quality Centre at Trent University. We thank Dr. Naomi L. Stock of the Water Quality Centre (Trent University), Dr. Shaojun Li and Amy Galer, for their expert advice in mass spectrometry, lipid analysis, and for technical assistance, respectively.

Funding

The research was supported by the Natural Sciences and Engineering Research Council (NSERC CU 121 470778–14). The Ontario Research Fund and the Canadian Foundation for Innovation provided funding to purchase mass spectrometers and other instrumentation in the Water Quality Centre at Trent University.

Author information

Authors and Affiliations

Authors

Contributions

Kira Ramphal: Conceptualization, Methodology, Formal analysis and investigation, Data Analysis, Data Curation, Writing – original draft

Ainsely Lewis: Writing – Review & Editing, Data Analysis, Data Curation

Natasha Trzaskalski: Writing—Review & Editing, Data Analysis, Data Curation

Anna Kisiala: Writing—Review & Editing, Data Analysis, Data Curation

Erin Morrison: Writing—Review & Editing

Suresh Narine: Conceptualization, Funding Acquisition, Resources, Supervision

RJ Neil Emery: Conceptualization, Funding Acquisition, Resources, Supervision, Writing – Review & Editing

Corresponding author

Correspondence to Ainsely Lewis.

Ethics declarations

Competing interests

All authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 171 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramphal, K., Lewis, A., Trzaskalski, N.A. et al. Phytohormonal impacts on fatty acid profiles in Chlorella vulgaris Beijerinck: endogenous identification and exogenous application of cytokinins and abscisic acid. J Appl Phycol 35, 2205–2218 (2023). https://doi.org/10.1007/s10811-023-03068-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03068-y

Keywords

Navigation