Log in

Cellular response of light/dark-grown green alga Chlorella vulgaris Beijerinck (Chlorophyceae) to exogenous adenine- and phenylurea-type cytokinins

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Treatment exposed to light Chlorella vulgaris Beijerinck (Chlorophyceae) with adenine- (BA, Kin, Z) and phenylurea-type (DPU) cytokinins effects positively on alga viability by 1.5- to twofold increase in cell number, chlorophylls, carotenoids, monosaccharides and glycolate content as well as NADH-dependent hydroxypyruvate reducing enzyme activity (NADH-HPR) extensively involved in carbon metabolism. Cytokinins enhance nitrogen assimilation by stimulation of NADH-dependent glutamate dehydrogenase (NADH-GDH) aminating activity finally leading to higher protein level and its secretion as well as polypeptide accumulation in the range of molecular weight 12–195 kDa. In the dark, cytokinins mimic the regulatory effect of light upon algal cell division, metabolite content and stimulate carbon recycling for Calvin cycle reactions by enhancing of light-dependent NADH-HPR activity. The delaying of protein degradation and stimulation of their secretion to environment, triggering polypeptide accumulation and twofold higher NADH-GDH activity catalysing amino acids biosynthesis are observed in the dark-grown microalgae in response to cytokinins. Chlorella vulgaris exhibits sensitivity on cytokinins in the following order of their stimulating properties: DPU > Z > Kin > BA in both light and dark conditions. Understanding of cytokinin role in lower plants under different light conditions could be a step toward the elucidation of the evolution of hormone regulation and their action at molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BA:

N6-Benzyladenine

DPU:

N,N′-Diphenylurea

Kin:

Kinetin

NADH-GDH:

NADH-dependent glutamate dehydrogenase

NADH-HPR:

NADH-dependent hydroxypyruvate reductase

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

Z:

trans-Zeatin

References

  • Andersen BR, ** G, Chen R, Ertl JR, Chen CM (1996) Transcriptional regulation of hydroxypyruvate reductase gene expression by cytokinin in etiolated pumpkin cotyledons. Planta 198:1–5. doi:10.1007/BF00197579

    Article  PubMed  CAS  Google Scholar 

  • Barciszewski J, Siboska GE, Pedersen BO, Clark BFC (1996) Evidence for the presence of kinetin in DNA and cell extracts. FEBS Lett 393:197–200. doi:10.1016/0014-5793(96)00884-8

    Article  PubMed  CAS  Google Scholar 

  • Benková E, Witters E, van Dongen W, Kolár J, Motyka V, Brzobochaty B, van Onckelen H, Machačkowá I (1999) Cytokinins in tobacco and wheat chloroplasts. Occurrence and changes due to light/dark treatment. Plant Physiol 121:245–251. doi:10.1104/pp.121.1.245

    Article  PubMed  Google Scholar 

  • Bertoni GP, Becker WM (1993) Effects of light fluence and wavelength on expression of the gene encoding cucumber hydroxypyruvate reductase. Plant Physiol 103:933–941. doi:10.1104/pp.103.3.933

    Article  PubMed  CAS  Google Scholar 

  • Blagoeva E, Dobrev P, Malbeck J, Motyka V, Gaudinova A, Vaňková R (2004) Effect of exogenous cytokinins, auxins and adenine on cytokinin N-glucosylation and cytokinin oxidase/dehydrogenase activity in de-rooted radish seedlings. Plant Growth Regul 44:15–23. doi:10.1007/s10725-004-1934-7

    Article  CAS  Google Scholar 

  • Buczek J, Kubik-Dobosz G, Tatkowska E (1975) The influence of gibberelic acid and kinetin on the growth of Scenedesmus quadriqauda (Turp.) Bréb. Acta Soc Bot Pol 44:415–421

    CAS  Google Scholar 

  • Burkiewicz K (1987) The influence of gibberellins and cytokinins on the growth of some unicellular Baltic algae. Bot Mar 30:63–69

    CAS  Google Scholar 

  • Buschmann C, Lichtenthaller HK (1982) The effect of cytokinins on growth and pigment accumulation of radish seedlings (Raphanus sativus L.) grown in the dark and at different light quanta fluence rates. Photochem Photobiol 35:217–221. doi:10.1111/j.1751-1097.1982.tb03835.x

    Article  CAS  Google Scholar 

  • Calkins VP (1943) Micro determination of glycolic and oxalic acids. Ind Eng Chem Res 15:762–764. doi:10.1021/i560124a020

    CAS  Google Scholar 

  • Carimi F, Terzi M, de Michele R, Zottini M, Schiavo FL (2004) High levels of cytokinin BAP induce PCD by accelerating senescence. Plant Sci 166:963–969. doi:10.1016/j.plantsci.2003.12.016

    Article  CAS  Google Scholar 

  • Chin-Atkins AN, Craig S, Hocart CH, Dennis CS, Chaudhury AH (1996) Increased endogenous cytokinins in the Arabidopsis amp1 mutant corresponds with de-etiolation response. Planta 198:549–556. doi:10.1007/BF00262641

    Article  CAS  Google Scholar 

  • Costa ML, Civello PM, Chaves AR, Martínez GA (2005) Effect of ethephon and 6-benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-linked chlorophyll bleaching during post-harvest senescence of broccoli (Brassica oleracea L.) at 20°C. Postharvest Biol Technol 35:191–199. doi:10.1016/j.postharvbio.2004.07.007

    Article  CAS  Google Scholar 

  • Czerpak R, Bajguz A (1997) Stimulatory effect of auxins and cytokinins on carotenes, with differential effects on xanthophylls in the green alga Chlorella pyrenoidosa Chick. Acta Soc Bot Pol 66:41–46

    CAS  Google Scholar 

  • Czerpak R, Krotke A, Mical AH (1999) Comparison of stimulatory effect of auxins and cytokinins on protein, saccharides and chlorophylls content in Chlorella pyrenoidosa Chick. Pol Arch Hydrobiol 46:71–82

    CAS  Google Scholar 

  • de Nys R, Jameson PE, Chin N, Brown MT, Sanderson KJ (1990) The influence of cytokinins on the growth of Macrocystis pyrifiera. Bot Mar 34:465–467

    Article  Google Scholar 

  • Gaudinova A (1990) The effect of cytokinin on nitrate reductase activity. Biol Plant 32:89–96. doi:10.1007/BF02897545

    Article  CAS  Google Scholar 

  • Genkov T, Tsaneva P, Ivanova I (1997) Effect of cytokinins on photosynthetic pigments and chlorophyllase activity in vitro cultures of axillary buds of Dianthus caryophyllus L. J Plant Growth Regul 16:169–172. doi:10.1007/PL00006992

    Article  CAS  Google Scholar 

  • Groat RG, Vance CP (1981) Root nodules enzymes of ammonium assimilation in alfalfa (Medicago sativa L.). Plant Physiol 67:1198–1203

    Article  PubMed  CAS  Google Scholar 

  • Ivanova M, Todorov I, Pashankov P, Kostova L, Kaminek M (1992) Estimation of cytokinins in the unicellular green algae Chlamydomonas reinhardtii Dang. In: Kaminek M, Mok DWS, Zažimalová E (eds) Physiology and biochemistry of cytokinins in plants. SPB Academic Publishing, The Hague, pp 483–485

    Google Scholar 

  • Ivic SD, Sicher RC, Smigocki AC (2001) Growth habit and sugar accumulation in sugarbeet (Beta vulgaris L.) transformed with a cytokinin biosynthesis gene. Plant Cell Rep 20:770–773. doi:10.1007/s002990100389

    Article  CAS  Google Scholar 

  • Jackowski G, Jarmołowski A, Szweykowska A (1987) Kinetin modifies the secondary structure of poly(A+)RNA in cucumber cotyledons. Plant Sci 52:67–70. doi:10.1016/0168-9452(87)90106-3

    Article  CAS  Google Scholar 

  • Jayabaskaran C (1998) Light- and phytohormone-induced variations in the level and modified nucleotide content of plastid tRNAs. Plant Sci 131:115–122. doi:10.1016/S0168-9452(97)00246-X

    Article  CAS  Google Scholar 

  • Jennings RC, Broughton WJ, McComb AJ (1972) Effect of kinetin on the phycoerythrin and chlorophyll content of red algae. Phytochemistry 11:1937–1943. doi:10.1016/S0031-9422(00)90155-9

    Article  CAS  Google Scholar 

  • Jordi W, Schapendonk A, Davelaar E, Stoopen GM, Pot CS, de Visser R, Rhijn JA, Gan S, Amasino RM (2000) Increased cytokinins levels in transgenic PSAG12-IPT tobacco plant have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ 23:279–289. doi:10.1046/j.1365-3040.2000.00544.x

    Article  CAS  Google Scholar 

  • Kasten B, Buck F, Nuske J, Reski R (1997) Cytokinin affects nuclear- and plastome-encoded energy-converting plastid enzymes. Planta 201:261–272. doi:10.1007/s004250050065

    Article  PubMed  CAS  Google Scholar 

  • Kehlenbeck P, Coyal A, Tolbert NE (1995) Factors affecting development of peroxisomes and glycolate metabolism among algae of different evolutionary lines of the Prasinophyceae. Plant Physiol 109:1363–1370

    PubMed  CAS  Google Scholar 

  • Knop W (1865) Quantitative untersuchungen über die ernahrungsprozesse der pflanzen. 7:93–107

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lara MEB, Garcia MCG, Fatima T, Ehneß R, Lee TK, Proels R, Tanner W, Roitsch T (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287. doi:10.1105/tpc.018929

    Article  Google Scholar 

  • Lee YK, Low CS (1993) Productivity of outdoor algal cultures in unstable weather conditions. Biotechnol Bioeng 41:1003–1006. doi:10.1002/bit.260411012

    Article  PubMed  CAS  Google Scholar 

  • Li YL, Ma QH (2007) Effects of benzylaminopurine and irradiance on cytokinin contents, α-tubulin gene expression and cucumber cotyledon expansion. Biol Plant 51:217–222. doi:10.1007/s10535-007-0044-6

    Article  CAS  Google Scholar 

  • Lowry HO, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamoto T (1982) Cytokinin activity of N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (Thidiazuron). Phytochemistry 21:1509–1511

    CAS  Google Scholar 

  • Murray AJS, Blackwell RD, Lea PJ (1989) Metabolism of hydroxypyruvate in a mutant of barley lacking NADH-dependent hydroxypyruvate reductase, an important photorespiratory enzyme activity. Plant Physiol 91:395–400

    Article  PubMed  CAS  Google Scholar 

  • Ookawa T, Naruoka Y, Sayama A, Hirasawa T (2004) Cytokinin effects on ribulose-1,5-bisphosphate carboxylase/oxygenase and nitrogen partitioning in rice during ripening. Crop Sci 44:2107–2115

    Article  CAS  Google Scholar 

  • Pedersén M (1973) Identification of a cytokinin, 6-(3-methyl-2-butenylamino)purine, in seawater and the effect of cytokinins on brown algae. Physiol Plant 28:101–105. doi:10.1111/j.1399-3054.1973.tb01158.x

    Article  Google Scholar 

  • Piotrowska A, Czerpak R, Adamowicz J, Biedrzycka A, Potocka M (2005) Comparison of stimulatory effect of cytokinins adenine and urea derivatives on level of some components in Wolffia arrhiza (L.) Wimm. (Lemnaceae). Acta Soc Bot Pol 74:111–118

    CAS  Google Scholar 

  • Pirson A, Lorenzen H (1966) Synchronised dividing algae. Annu Rev Plant Physiol 17:439–458. doi:10.1146/annurev.pp.17.060166.002255

    Article  Google Scholar 

  • Sakakibara H (2003) Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plants. J Plant Res 116:253–257. doi:10.1007/s10265-003-0097-3

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sergiev I, Todorova D, Somleva M, Alexieva V, Karanov E, Stanoeva E, Lachkova V, Smith A, Hall M (2007) Influence of cytokinins and novel cytokinin antagonists on the senescence of detached leaves of Arabidopsis thaliana. Biol Plant 51:377–380. doi:10.1007/s10535-007-0079-8

    Article  CAS  Google Scholar 

  • Somogyi M (1954) Notes on sugar determination. J Biol Chem 195:19–23

    Google Scholar 

  • Stirk WA, van Staden J (1997) Comparison of cytokinin- and auxin-like activity in some commercially used seaweed extracts. J Appl Phycol 8:503–508. doi:10.1007/BF02186328

    Article  Google Scholar 

  • Stirk WA, Novák O, Strnad M, van Staden J (2003) Cytokinins in macroalgae. Plant Growth Regul 41:13–24. doi:10.1023/A:1027376507197

    Article  CAS  Google Scholar 

  • Strnad M (1997) The aromatic cytokinins. Physiol Plant 101:674–688. doi:10.1111/j.1399-3054.1997.tb01052.x

    Article  CAS  Google Scholar 

  • Synková H, Semorádová Š, Burketová L (2004) High content of endogenous cytokinins stimulates activity of enzymes and proteins involved in stress response in Nicotiana tabacum. Plant Cell Tissue Organ Cult 79:169–179. doi:10.1007/s11240-004-0657-9

    Article  Google Scholar 

  • Tatkowska E, Buczek J (1980) Effect of phytohormones on the growth of Scenedesmus quadricauda (Turp.) Bréb. Acta Soc Bot Pol 49:211–220

    CAS  Google Scholar 

  • Thomas TH, Hare PD, van Staden J (1997) Phytochrome and cytokinin responses. Plant Growth Regul 23:105–122. doi:10.1023/A:1005906609158

    Article  CAS  Google Scholar 

  • Verbeke P, Siboska GE, Clark BFC, Rattan SIS (2000) Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem Biophys Res Commun 276:1265–1270. doi:10.1006/bbrc.2000.3616

    Article  PubMed  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Wingler A, von Schaewen A, Leegond RC, Lea PJ, Quick WP (1998) Regulation of leaf senescence by cytokinin, sugars and light. Effects on HADH-dependent hydroxypyruvate reductase. Plant Physiol 116:329–335. doi:10.1104/pp.116.1.329

    Article  CAS  Google Scholar 

  • Zhang W, Yamane H, Takahashi N, Chapman DJ, Phinney BO (1989) Identification of a cytokinin in the green alga Chara globularis. Phytochemistry 28:337–338. doi:10.1016/0031-9422(89)80007-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicja Piotrowska.

Additional information

Communicated by P. Wojtaszek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piotrowska, A., Czerpak, R. Cellular response of light/dark-grown green alga Chlorella vulgaris Beijerinck (Chlorophyceae) to exogenous adenine- and phenylurea-type cytokinins. Acta Physiol Plant 31, 573–585 (2009). https://doi.org/10.1007/s11738-008-0267-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-008-0267-y

Keywords

Navigation