Log in

Componentwise linearity of powers of cover ideals

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Let G be a finite simple graph and J(G) denote its vertex cover ideal in a polynomial ring over a field. The k-th symbolic power of J(G) is denoted by \(J(G)^{(k)}\). In this paper, we give a criterion for cover ideals of vertex decomposable graphs to have the property that all their symbolic powers are not componentwise linear. Also, we give a necessary and sufficient condition on G so that \(J(G)^{(k)}\) is a componentwise linear ideal for some (equivalently, for all) \(k \ge 2\) when G is a graph such that \(G {\setminus } N_G[A]\) has a simplicial vertex for any independent set A of G. Using this result, we prove that \(J(G)^{(k)}\) is a componentwise linear ideal for several classes of graphs for all \(k \ge 2\). In particular, if G is a bipartite graph, then J(G) is a componentwise linear ideal if and only if \(J(G)^k\) is a componentwise linear ideal for some (equivalently, for all) \(k \ge 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. The W-graph is named in honor of Russ Woodroofe.

References

  1. Biermann, J., Francisco, C.A., Hà, H.T., Van Tuyl, A.: Partial coloring, vertex decomposability, and sequentially Cohen–Macaulay simplicial complexes. J. Commut. Algebra 7(3), 337–352 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlini, E., Hà, H.T., Harbourne, B., Van Tuyl, A.: Ideals of Powers and Powers of Ideals: Intersecting Algebra, Geometry, and Combinatorics, volume 27 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin (2020)

    Book  MATH  Google Scholar 

  3. Castrillón, I.D., Cruz, R., Reyes, E.: On well-covered, vertex decomposable and Cohen–Macaulay graphs. Electron. J. Combin. 23(2), Paper 2.39, 17 (2016)

  4. Cook, D., II.: Simplicial decomposability. J. Softw. Algebra Geom. 2, 20–23 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crupi, M., Rinaldo, G., Terai, N.: Cohen–Macaulay edge ideal whose height is half of the number of vertices. Nagoya Math. J. 201, 117–131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dao, H., De Stefani, A., Grifo, E., Huneke, C., Núñez Betancourt, L.: Symbolic powers of ideals. In: Singularities and Foliations. Geometry, Topology and Applications, volume 222 of Springer Proceedings in Mathematics and Statistics, pp. 387–432. Springer, Cham (2018)

  7. Dirac, G.A.: On rigid circuit graphs. Abh. Math. Semin. Univ. Hambg. 25, 71–76 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drabkin, B., Grifo, E., Seceleanu, A., Stone, B.: Calculations involving symbolic powers. J. Softw. Algebra Geom. 9(1), 71–80 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dung, L.X., Hien, T.T., Nguyen, H.D., Trung, T.N.: Regularity and Koszul property of symbolic powers of monomial ideals. Math. Z. 298(3–4), 1487–1522 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eagon, J.A., Reiner, V.: Resolutions of Stanley–Reisner rings and Alexander duality. J. Pure Appl. Algebra 130(3), 265–275 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erey, N.: Powers of ideals associated to \((C_4,2K_2)\)-free graphs. J. Pure Appl. Algebra 223(7), 3071–3080 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Francisco, C.A., Hà, H.T.: Whiskers and sequentially Cohen–Macaulay graphs. J. Combin. Theory Ser. A 115(2), 304–316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Francisco, C.A., Hoefel, A., Van Tuyl, A.: EdgeIdeals: a package for (hyper)graphs. J. Softw. Algebra Geom. 1, 1–4 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Francisco, C.A., Van Tuyl, A.: Sequentially Cohen–Macaulay edge ideals. Proc. Amer. Math. Soc. 135(8), 2327–2337 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gitler, I., Reyes, E., Villarreal, R.H.: Blowup algebras of ideals of vertex covers of bipartite graphs. In: Peña, J.A., Vallejo, E., Atakishiyev, N. (eds.) Algebraic Structures and Their Representations, volume 376 of Contemporary Mathematics, pp. 273–279. American Mathematical Society, Providence (2005)

    Chapter  MATH  Google Scholar 

  16. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  17. Gu, Y., Hà, H.T., Skelton, J.W.: Symbolic powers of cover ideals of graphs and Koszul property. Internat. J. Algebra Comput. 31(5), 865–881 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hà, H.T., Van Tuyl, A.: Powers of componentwise linear ideals: the Herzog–Hibi–Ohsugi conjecture and related problems. Res. Math. Sci. 9, 22 (2022)

  19. Herzog, J., Hibi, T.: Componentwise linear ideals. Nagoya Math. J. 153, 141–153 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics, vol. 260. Springer, London (2011)

    Book  MATH  Google Scholar 

  21. Herzog, J., Hibi, T., Moradi, S.: Componentwise linear powers and the \(x\)-condition (2020)

  22. Herzog, J., Hibi, T., Ohsugi, H.: Powers of componentwise linear ideals. In: Combinatorial Aspects of Commutative Algebra and Algebraic Geometry, volume 6 of the Abel Symposium, pp. 49–60. Springer, Berlin (2011)

  23. Herzog, J., Reiner, V., Welker, V.: Componentwise linear ideals and Golod rings. Michigan Math. J. 46(2), 211–223 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Herzog, J., Takayama, Y.: Resolutions by map** cones. Homology Homotopy Appl. 4(2, part 2), 277–294 (2002) (The Roos Festschrift volume, 2)

  25. Jahan, A.S., Zheng, X.: Ideals with linear quotients. J. Combin. Theory Ser. A 117(1), 104–110 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jayanthan, A.V., Narayanan, N., Selvaraja, S.: Regularity of powers of bipartite graphs. J. Algebraic Combin. 47(1), 17–38 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jayanthan, A.V., Selvaraja, S.: Upper bounds for the regularity of powers of edge ideals of graphs. J. Algebra 574, 184–205 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kumar, A., Kumar, R.: On the powers of vertex cover ideals. J. Pure Appl. Algebra 226(1):Paper No. 106808, 10 (2022)

  29. Mohammadi, F.: Powers of the vertex cover ideal of a chordal graph. Comm. Algebra 39(10), 3753–3764 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mohammadi, F.: Powers of the vertex cover ideals. Collect. Math. 65(2), 169–181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mohammadi, F., Moradi, S.: Weakly polymatroidal ideals with applications to vertex cover ideals. Osaka J. Math. 47(3), 627–636 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Nemati, N., Pournaki, M.R., Yassemi, S.: Componentwise linearity and the gcd condition are preserved by the polarization. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 64(112)(4), 391–399 (2021)

  33. Selvaraja, S.: Symbolic powers of vertex cover ideals. Internat. J. Algebra Comput. 30(6), 1167–1183 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Seyed Fakhari, S.A.: Symbolic powers of cover ideal of very well-covered and bipartite graphs. Proc. Amer. Math. Soc. 146(1), 97–110 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Seyed Fakhari, S.A.: On the minimal free resolution of symbolic powers of cover ideals of graphs. Proc. Amer. Math. Soc. 149(9), 3687–3698 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Van Tuyl, A.: Sequentially Cohen–Macaulay bipartite graphs: vertex decomposability and regularity. Arch. Math. (Basel) 93(5), 451–459 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Van Tuyl, A., Villarreal, R.H.: Shellable graphs and sequentially Cohen–Macaulay bipartite graphs. J. Combin. Theory Ser. A 115(5), 799–814 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. West, D.B.: Introduction to Graph Theory. Prentice Hall Inc, Upper Saddle River (1996)

    MATH  Google Scholar 

  39. Woodroofe, R.: Vertex decomposable graphs and obstructions to shellability. Proc. Amer. Math. Soc. 137(10), 3235–3246 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Woodroofe, R.: Chordal and sequentially Cohen–Macaulay clutters. Electron. J. Combin. 18(1):Paper 208, 20 (2011)

Download references

Acknowledgements

The authors would like to thank Huy Tài Hà for valuable discussions. The authors extensively used Macaulay2, [16], and the packages EdgeIdeals, [13], SimplicialDecomposability, [4], SymbolicPowers, [8], for testing their computations. The first author is supported by DST, Govt of India under the DST-INSPIRE [DST/Inspire/04/2019/001353] Faculty Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph W. Skelton.

Additional information

Dedicated to Professor Jürgen Herzog on the occasion of his 80th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraja, S., Skelton, J.W. Componentwise linearity of powers of cover ideals. J Algebr Comb 57, 111–134 (2023). https://doi.org/10.1007/s10801-022-01160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-022-01160-z

Keywords

Mathematics subject classification

Navigation