Log in

Low-cost laser for fabrication of affordable graphene-induced microband sensors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Graphene microband electrodes were fabricated by direct laser writing on Kapton® polyimide tape utilizing a low-cost, blue laser (500 mW and 405 nm). The structural properties of the graphene were examined by Raman spectroscopy, and key features such as D, G, and 2D bands and the presence of multilayer structures were revealed. Scanning electron microscopy (SEM) provided insights into the microband morphology, highlighting the 3D (foam-like) nature of the graphene microbands. Electrochemical experiments revealed cyclic voltammetry profiles that demonstrated radial diffusion dominance at low scan rates and Randles–Sevcik behavior at higher scan rates. Reproducibility and repeatability analyses confirmed the stability and consistency of these microband electrodes within individual devices. Scanning electrochemical microscopy (SECM) images revealed the electrochemical reactivity of the microbands. At a relatively low microband separation (200 µm), the produced material can be collected at the adjacent microband, which was confirmed via generator/collector experiments. Theoretical–experimental comparisons regarding the current measured for a single microband were performed, and the obtained results were in good agreement, with deviations attributed to the 3D morphology of the microbands. This research underscores the potential of these cost-effective and reproducible graphene microband electrodes for diverse applications in electrochemical sensing, and we present preliminary results on caffeic acid and paracetamol detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nag A, Mitra A, Mukhopadhyay SC (2018) Graphene and its sensor-based applications: A review. Sens Actuators, A 270:177–194. https://doi.org/10.1016/j.sna.2017.12.028

    Article  CAS  Google Scholar 

  2. Coroş M, Pruneanu S, Stefan-van Staden R-I (2020) Review—Recent progress in the graphene-based electrochemical sensors and biosensors. J Electrochem Soc 167:037528. https://doi.org/10.1149/2.0282003JES

    Article  Google Scholar 

  3. Geim AK, Novoselov KS (2007) The rise of graphene PROGRESS. Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  4. Bartelt JE, Deakin MR, Amatore C, Wightman RM (1988) Construction and use of paired and triple band microelectrodes in solutions of low ionic strength. Anal Chem 60:2167–2169. https://doi.org/10.1021/ac00170a040

    Article  CAS  Google Scholar 

  5. Li D, Batchelor-Mcauley C, Chen L, Compton RG (2019) Band electrodes in sensing applications: Response characteristics and band fabrication methods. ACS Sens 4:2250–2266. https://doi.org/10.1021/acssensors.9b01172

    Article  CAS  PubMed  Google Scholar 

  6. Pons S, Fleischmann M (1987) The behavoir of microelectrode. Anal Chem 59:

  7. Fleischmann M, Pons S, Rolison DR, Schimdt PP (1987) Ultramicroelectrodes, 1st edn. Datatech Systems, Morgantown

    Google Scholar 

  8. Ewing AG, Dayton MA, Wightman RM (1981) Pulse voltammetry with microvoltammetric electrodes. Anal Chem 53:1842–1847. https://doi.org/10.1021/ac00235a028

    Article  CAS  Google Scholar 

  9. Seddon BJ, Eddowes MJ, Firth A, Owen AE, Girault HHJ (2010) ChemInform abstract: Thin film electrode: A new method for the fabrication of submicrometer band electrodes. ChemInform. https://doi.org/10.1002/chin.199130013

    Article  Google Scholar 

  10. Chang J-L, Zen J-M (2006) Fabrication of disposable ultramicroelectrodes: Characterization and applications. Electrochem commun 8:571–576. https://doi.org/10.1016/j.elecom.2006.01.028

    Article  CAS  Google Scholar 

  11. Samuelsson M, Maarten A, Nylander C (1991) Microstep electrodes: band ultramicroelectrodes fabricated by photolithography and reactive ion etching. Anal Chem 63:931–936. https://doi.org/10.1021/ac00009a020

    Article  CAS  Google Scholar 

  12. Vagin MY, Sekretaryova AN, Reategui RS, Lundstrom I, Winquist F, Eriksson M (2014) Arrays of screen-printed graphite microband electrodes as a versatile electroanalysis platform. ChemElectroChem 1:755–762. https://doi.org/10.1002/celc.201300204

    Article  CAS  Google Scholar 

  13. Metters JP, Kadara RO, Banks CE (2012) Electroanalytical properties of screen printed graphite microband electrodes. Sens Actuators B Chem 169:136–143. https://doi.org/10.1016/j.snb.2012.04.045

    Article  CAS  Google Scholar 

  14. Lin R, Lim TM, Tran T (2018) Carbon nanotube band electrodes for electrochemical sensors. Electrochem commun 86:135–139. https://doi.org/10.1016/j.elecom.2017.11.023

    Article  CAS  Google Scholar 

  15. Hayashi K, Takahashi J, Horiuchi T, Iwasaki Y, Haga T (2008) Development of nanoscale interdigitated array electrode as electrochemical sensor platform for highly sensitive detection of biomolecules. J Electrochem Soc 155:J240. https://doi.org/10.1149/1.2952668

    Article  CAS  Google Scholar 

  16. Amatore C, Pebay C, Sella C, Thouin L (2012) Mass transport at microband electrodes: Transient, quasi-steady-state, and convective regimes. ChemPhysChem 13:1562–1568. https://doi.org/10.1002/cphc.201100942

    Article  CAS  PubMed  Google Scholar 

  17. Amatore C, Da Mota N, Sella C, Thouin L (2008) General concept of high-performance amperometric detector for microfluidic (bio)analytical chips. Anal Chem 80:4976–4985. https://doi.org/10.1021/ac800227t

    Article  CAS  PubMed  Google Scholar 

  18. René A, Cugnet C, Hauchard D, Authier L (2012) Elaboration of screen-printed microelectrodes working as generator/collector and their use in a flow cell system. Sens Actuators B Chem 174:225–230. https://doi.org/10.1016/j.snb.2012.07.109

    Article  CAS  Google Scholar 

  19. Paixão TRLC, Matos RC, Bertotti M (2003) Design and characterisation of a thin-layered dual-band electrochemical cell. Electrochim Acta 48:691–698. https://doi.org/10.1016/S0013-4686(02)00738-7

    Article  Google Scholar 

  20. Bitziou E, Snowden ME, Joseph MB, Leigh SJ, Covington JA, MacPherson JV, Unwin PR (2013) Dual electrode micro-channel flow cell for redox titrations: Kinetics and analysis of homogeneous ascorbic acid oxidation. J Electroanal Chem 692:72–79. https://doi.org/10.1016/j.jelechem.2012.12.014

    Article  CAS  Google Scholar 

  21. Baur JE, Miller HM, Ritchason MA (1999) Diffusional interaction between closely spaced dual microelectrodes. Anal Chim Acta 397:123–133. https://doi.org/10.1016/S0003-2670(99)00398-0

    Article  CAS  Google Scholar 

  22. Kostecki R, Song XY, Kinoshita K (2000) Influence of geometry on the electrochemical response of carbon interdigitated microelectrodes. J Electrochem Soc 147:1878. https://doi.org/10.1149/1.1393451

    Article  CAS  Google Scholar 

  23. Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel ELG, Yacaman MJ, Yakobson BI, Tour JM (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:5714. https://doi.org/10.1038/ncomms6714

    Article  CAS  PubMed  Google Scholar 

  24. Zhu Y, Cai H, Ding H, Pan N, Wang X (2019) Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b17085

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bobinger MR, Romero FJ, Salinas-Castillo A, Becherer M, Lugli P, Morales DP, Rodríguez N, Rivadeneyra A (2019) Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon 144:116–126. https://doi.org/10.1016/j.carbon.2018.12.010

    Article  CAS  Google Scholar 

  26. Romero FJ, Salinas-Castillo A, Rivadeneyra A, Albrecht A, Godoy A, Morales DP, Rodriguez N (2018) In-depth study of laser diode ablation of Kapton polyimide for flexible conductive substrates. Nanomaterials 8:1–11. https://doi.org/10.3390/nano8070517

    Article  CAS  Google Scholar 

  27. Mendes LF, Pradela-Filho LA, Paixão TRLC (2022) Polyimide adhesive tapes as a versatile and disposable substrate to produce CO2 laser-induced carbon sensors for batch and microfluidic analysis. Microchem J 182:107893. https://doi.org/10.1016/j.microc.2022.107893

    Article  CAS  Google Scholar 

  28. Ye X, Long J, Lin Z, Zhang H, Zhu H, Zhong M (2014) Direct laser fabrication of large-area and patterned graphene at room temperature. Carbon 68:784–790. https://doi.org/10.1016/j.carbon.2013.11.069

    Article  CAS  Google Scholar 

  29. Zhang Z, Zhu H, Zhang W, Zhang Z, Lu J, Xu K, Liu Y, Saetang V (2023) A review of laser-induced graphene: From experimental and theoretical fabrication processes to emerging applications. Carbon 214:118356. https://doi.org/10.1016/j.carbon.2023.118356

    Article  CAS  Google Scholar 

  30. Galvão NKdAM, de Vasconcelos G, dos Santos MVR, Campos TMB, Pessoa RS, Guerino M, Djouadi MA, Maciel HS (2016) Growth and characterization of graphene on polycrystalline SiC substrate using heating by CO2 laser beam. Mater Res 19:1329–1334. https://doi.org/10.1590/1980-5373-mr-2016-0296

    Article  CAS  Google Scholar 

  31. Qiao YC, Wei YH, Pang Y, Li YX, Wang DY, Li YT, Deng NQ, Wang XF, Zhang HN, Wang Q, Yang Z, Tao LQ, Tian H, Yang Y, Ren TL (2018) Graphene devices based on laser scribing technology. Jpn J Appl Phys. https://doi.org/10.7567/JJAP.57.04FA01

    Article  Google Scholar 

  32. Fd J, Pinto ALM, Bertotti M, Carreno MNP, Pereyra I (2022) Electrochemical electrodes based on laser induced graphene on PECVD a-SiC: H and polyimide. 2022 36th Symposium on Microelectronics Technology (SBMICRO). IEEE, pp 1–4

    Google Scholar 

  33. Pedrotti JJ, Angnes L, Gutz IGR (1996) Miniaturized reference electrodes with microporous polymer junctions. Electroanalysis 8:673–675. https://doi.org/10.1002/elan.1140080713

    Article  Google Scholar 

  34. Gustavo Cançado L, Gomes da Silva M, Martins Ferreira EH, Hof F, Kampioti K, Huang K, Pénicaud A, Alberto Achete C, Capaz RB, Jorio A (2017) Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials. 2D Mater 4:025039. https://doi.org/10.1088/2053-1583/aa5e77

    Article  CAS  Google Scholar 

  35. Wang H, Wang Y, Cao X, Feng M, Lan G (2009) Vibrational properties of graphene and graphene layers. J Raman Spectrosc 40:1791–1796. https://doi.org/10.1002/jrs.2321

    Article  CAS  Google Scholar 

  36. Kumar V, Kumar A, Lee D-J, Park S-S (2021) Estimation of number of graphene layers using different methods: A focused review. Materials 14:4590. https://doi.org/10.3390/ma14164590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaur S, Mager D, Korvink JG, Islam M (2021) Unraveling the dependency on multiple passes in laser-induced graphene electrodes for supercapacitor and H2O2 sensing. Mater Sci Energy Technol 4:407–412. https://doi.org/10.1016/j.mset.2021.09.004

    Article  CAS  Google Scholar 

  38. Aoki K, Tokuda K (1987) Linear sweep voltammetry at microband electrodes. J Electroanal Chem Interfacial Electrochem 237:163–170. https://doi.org/10.1016/0022-0728(87)85229-4

    Article  CAS  Google Scholar 

  39. Szabo A, Cope DK, Tallman DE, Kovach PM, Wightman RM (1987) Chronoamperometric current at hemicylinder and band microelectrodes: Theory and experiment. J Electroanal Chem Interfacial Electrochem 217:417–423. https://doi.org/10.1016/0022-0728(87)80233-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Council for Scientific and Technological Development (CNPq 140259/2021-0) and the São Paulo State Research Foundation (FAPESP 2018/08782-1 and 2022/03665-2) for their financial support.

Funding

This work is supported by the National Council for Scientific and Technological Development (CNPq 140259/2021-0) and the São Paulo State Research Foundation (FAPESP 2018/08782-1 and 2022/03665-2).

Author information

Authors and Affiliations

Authors

Contributions

L. M. A. R contributed to Conceptualization, Methodology, Formal analysis, Writing of the original draft, and review and editing of the manuscript and prepared Figs. 1, 4, 5, 8, and S2-S6 D. J. F. contributed to Conceptualization, Methodology, Formal analysis, and review and editing of the manuscript and prepares Figs. 2 and 3 P. C. F. contributed to Methodology, Formal analysis, and review and editing of the manuscript and prepared Figs. 6, 7, and S1. M. N. P. C. contributed to Supervision and Writing and reviewing of the manuscript; I. P. contributed to Conceptualization, Supervision, and Writing and reviewing of the manuscript; M. B. contributed to Conceptualization, Methodology, Supervision, and Writing, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Mauro Bertotti.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 878 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, L.M.A., Feria, D.J., Falcoswki, P.C. et al. Low-cost laser for fabrication of affordable graphene-induced microband sensors. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02132-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02132-w

Keywords

Navigation