Log in

Japanese Encephalitis Virus Envelope Protein Mitigates TNF-α mRNA Expression in RAW264.7 Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Japanese encephalitis virus (JEV) is known as an important mosquito-borne human pathogen that causes Japanese encephalitis and may lead to lethal effect. Since monocyte has been demonstrated to play transmissible role for JEV, rare study is reported to clarify the effect of JEV envelope (JEVE) protein on monocyte. This study intends to investigate the effects of JEVE protein inside monocyte. Notably, significant decreased expression of tumour necrosis factor (TNF)-α mRNA in RAW264.7 cells transfected with pEGFP-JEVE was observed as compared to those cells transfected with pEGFP. Increased p21Waf1/Cip1 protein was observed in both pEGFP and pEGFP-JEVE transfected RAW264.7 cells. However, increased p53 protein was only detected in pEGFP-transfected cells but not pEGFP-JEVE transfected cells as well as the result that no increased expression of nuclear factor-kB was observed in pEGFP-JEVE transfected cells. These experimental results indicate the effects of JEVE protein in alleviating TNF-α mRNA expression that is associated with the increased p53-independent p21Waf1/Cip1 expression and provide an explanation in the role of JEV transmission through monocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

JEV:

Japanese encephalitis virus

TNF:

tumour necrosis factor

NF-kB:

nuclear factor-kB

References

  1. Kitano, T., K. Suzuki, and T. Yamaguchi. 1974. Morphological, chemical, and biological characterization of Japanese encephalitis virus virion and its hemagglutinin. J. Virol. 14:631–639.

    PubMed  CAS  Google Scholar 

  2. Chamber, T. J., C. S. Hahn, R. Galler, and C. M. Rice. 1990. Flavivirus genome organization, expression and replication. Annu. Rev. Microbiol. 44:649–688.

    Article  Google Scholar 

  3. Zhang, F., Q. Huang, W. Ma, S. Jiang, Y. Fan, and H. Zhang. 2001. Amplification and cloning of the fulllength genome of Japanese encephalitis virus by a novel long RT-PCR protocol in a cosmid vector. J. Virol. Methods 96:171–182.

    Article  PubMed  CAS  Google Scholar 

  4. Umenai, T., R. Krzysko, T. A. Bektimirov, and F. A. Assaad. 1985. Japanese encephalitis: current worldwide status. Bull. World Health Organ. 63:625–631.

    PubMed  CAS  Google Scholar 

  5. Takegami, T., H. Miyamoto, H. Nakamura, and K. Yasui. 1982. Biological activities of the structural proteins of Japanese encephalitis virus. Acta. Virol. 26:312–320.

    PubMed  CAS  Google Scholar 

  6. McMinn, P. C.. 1997. The molecular basis of virulence of the encephalogenic flaviviruses. J. Gen. Virol. 78:2711–2722.

    PubMed  CAS  Google Scholar 

  7. Mason, P. W., S. Pincus, M. J. Fournier, T. L. Mason, R. E. Shope, and E. Paoletti. 1991. Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology 180:294–305.

    Article  PubMed  CAS  Google Scholar 

  8. Konishi, E., S. Pincus, E. Paoletti, R. E. Shope, T. Burrage, and P. W. Mason. 1992. Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology 188:714–20.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, S. O., T. J. Chang, G. Stone, C. H. Chen, and J. J. Liu. 2006. Programmed cell death induced by Japanese encephalitis virus YL vaccine strain or its recombinant envelope protein in varied cultured cells. Intervirology 49:346–351.

    Article  PubMed  CAS  Google Scholar 

  10. Yang, K. D., W. T. Yeh, R. F. Chen, H. L. Chuon, H. P. Tsai, C. W. Yao, and M. F. Shaio. 2004. A model to study neurotropism and persistency of Japanese encephalitis virus infection in human neuroblastoma cells and leukocytes. J. Gen. Virol. 85:635–642.

    Article  PubMed  CAS  Google Scholar 

  11. Ravi, V., S. Parida, A. Desai, A. Chandramuki, M. Gourie-Devi, and G. E. Grau. 1997. Correlation of tumor necrosis factor levels in the serum and cerebrospinal fluid with clinical outcome in Japanese encephalitis patients. J. Med. Virol. 51:132–136.

    Article  PubMed  CAS  Google Scholar 

  12. Shimizu, A., T. Ogata, and M. Kitaoka. 1977. Biological and immunological studies on two substrains, c-1 and c-3, derived from the Nakayama-NIH strain of Japanese encephalitis virus. Intervirology 8:52–59.

    Article  PubMed  CAS  Google Scholar 

  13. Wu, S. C., W. C. Lian, L. C. Hsu, Y. C. Wu, and M. Y. Liau. 1998. Antigenic characterization of nine wild-type Taiwanese isolates of Japanese encephalitis virus as compared with two vaccine strains. Virus Res. 55:83–91.

    Article  PubMed  CAS  Google Scholar 

  14. Bonnerot, C., D. Rocancourt, P. Briand, G. Grimber, and J. F. Nicolas. 1987. A β-galactosidase hybrid protein targeted to nuclei as a marker for developmental studies. Proc. Natl. Acad. Sci. U. S. A. 84:6795–6799.

    Article  PubMed  CAS  Google Scholar 

  15. Laemmli, U. K.. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–684.

    Article  PubMed  CAS  Google Scholar 

  16. Hayden, M. S., and S. Ghosh. 2004. Signaling to NF-kB. Genes Dev. 18:2195–2224.

    Article  PubMed  CAS  Google Scholar 

  17. Bonizzi, G., and M. Karin. 2004. The two NF-kB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25:280–288.

    Article  PubMed  CAS  Google Scholar 

  18. Jimi, E., and S. Ghosh. 2005. Role of nuclear factor-kappaB in the immune system and bone. Immunol. Rev. 208:80–87.

    Article  PubMed  CAS  Google Scholar 

  19. Canman, C. E., T. M. Gilmer, S. B. Coutts, and M. B. Kastan. 1995. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev. 9:600–611.

    Article  PubMed  CAS  Google Scholar 

  20. Levine, A. J.. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.

    Article  PubMed  CAS  Google Scholar 

  21. Takeda, A., and N. Takeda. 1999. Stress signal to survival and apoptosis. Ann. N. Y. Acad. Sci. 874:427–435.

    Article  PubMed  CAS  Google Scholar 

  22. Chiarugi, V., L. Magnelli, M. Cinelli, and G. Basi. 1994. Apoptosis and the cell cycle. Cell Mol. Biol. Res. 40:603–612.

    PubMed  CAS  Google Scholar 

  23. Gartel, A. L., M. S. Serfas, and A. L. Tyner. 1996. p21-negative regulator of the cell cycle. Proc. Soc. Exp. Biol. Med. 213:138–149.

    PubMed  CAS  Google Scholar 

  24. Cox, L. S. 1997. Multiple pathways control cell growth and transformation: overlap** and independent activities of p53 and p21Cip1/WAF1/Sdi1. J. Pathol. 183:134–140.

    Article  PubMed  CAS  Google Scholar 

  25. Gartel, A. L., and A. L. Tyner. 1998. The growth-regulatory role of p21 (WAF1/CIP1). Prog. Mol. Subcell. Biol. 20:43–71.

    PubMed  CAS  Google Scholar 

  26. Figarola, J. L., N. Shanmugam, R. Natarajan, and S. Rahbar. 2007. Anti-inflammatory effects of the advanced glycation end product inhibitor LR-90 in human monocytes. Diabetes 56:647–655.

    Article  PubMed  CAS  Google Scholar 

  27. Ozato, K., H. Tsujimura, and T. Tamura. 2002. Toll-like receptor signaling and regulation of cytokine gene expression in the immune system. Biotechniques Suppl, 66–8, 70, 72 passim.

  28. Kaisho, T., and S. Akira. 2001. Toll-like receptors and their signaling mechanism in innate immunity. Acta Odontol. Scand. 59:124–130.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the grant CSMU 95-OM-B-030 from Chung Shan Medical University, Taichung, Taiwan, R.O.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bor-Show Tzang.

Additional information

Huang and Tzang share equal contributions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, TC., Gao, JQ., Lu, KH. et al. Japanese Encephalitis Virus Envelope Protein Mitigates TNF-α mRNA Expression in RAW264.7 Cells. Inflammation 31, 133–140 (2008). https://doi.org/10.1007/s10753-008-9058-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-008-9058-2

Key words

Navigation