Log in

Tributaries create habitat heterogeneity and enhance fish assemblage variation in one of the largest reservoirs in the world

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The Three Gorges Reservoir is one of the largest reservoirs in the world. Previous studies uncovered longitudinal changes in fish assemblages among riverine, transitional, and lacustrine zones, but whether they vary at small-scale habitats and how tributaries contribute to fish conservation is poorly understood. We selected three neighboring tributaries with different habitat characteristics within and among tributaries and hypothesized that the small-scale habitat heterogeneity within or among tributaries could shape spatial and temporal variation in fish assemblages. We analyzed spatial (among tributaries, pelagic versus benthic, lower versus upper reach) and seasonal patterns of fish assemblage and their relationship with the environment. Piscivorous, limnophilic, and mid-pelagic species dominated the fish assemblage in different habitats. Fish assemblage structure varied spatially between lower and upper reaches and among tributaries. Fish assemblages also varied seasonally, mainly related to environmental variability (i.e., water depth, water temperature, pH, specific conductivity, riparian slope, and vegetation coverage). Catch per unit effort was similar between pelagic and benthic habitats but exhibited horizontal and seasonal changes. The most influential environmental variables were water depth, water temperature, dissolved oxygen, and pH. Our results supported the hypothesis, and indicated that we should protect tributaries that provide important areas for fish diversity in large reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The codes used in this study are available from the corresponding author on reasonable request.

References

  • Abdel-Dayem, M. S., M. R. Sharaf, J. D. Majer, M. K. Al-Sadoon, A. S. Aldawood, H. M. Aldhafer & G. M. Orabi, 2021. Ant diversity and composition patterns along the urbanization gradients in an arid city. Journal of Natural History 55: 2521–2547.

    Article  Google Scholar 

  • Alberti, M. & T. Z. Wang, 2022. Detecting patterns of vertebrate biodiversity across the multidimensional urban landscape. Ecology Letters 25: 1027–1045.

    Article  PubMed  Google Scholar 

  • Arantes, C. C., D. B. Fitzgerald, D. J. Hoeinghaus & K. O. Winemiller, 2019. Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Current Opinion in Environmental Sustainability 37: 28–40.

    Article  Google Scholar 

  • Azevedo-Santos, V. M., V. S. Daga, F. M. Pelicice & R. Henry, 2021. Drifting in a free-flowing river: distribution of fish eggs and larvae in a small tributary of a neotropical reservoir. Biota Neotropica. https://doi.org/10.1590/1676-0611-bn-2021-1227.

    Article  Google Scholar 

  • Ba, J. W. & D. Q. Chen, 2012. Invasive fishes in three gorges reservoir area and preliminary study on effects of fish invasion owing to impoundment. Journal of Lake Sciences 24: 185–189 (In Chinese with English Abstract).

    Article  Google Scholar 

  • Baselga, A. & C. D. L. Orme, 2012. betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3: 808–812.

    Article  Google Scholar 

  • Bates, D., M. Maechler, B. M. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.

    Article  Google Scholar 

  • CEN (European Committee for Standardization), 2015. Water Quality-Sampling of Fish with Multi-mesh Gillnets (EN 14757), Belgium, Brussels:

    Google Scholar 

  • Chen, X. & B. Liu, 2022. Life history and early development of fishes. Biology of Fishery Resources. https://doi.org/10.1007/978-981-16-6948-4_3.

    Article  PubMed  Google Scholar 

  • Chen, F. Q., M. Zhang, Y. Wu & Y. W. Huang, 2020. Seed rain and seed bank of a draw-down zone and their similarities to vegetation under the regulated water-level fluctuation in **angxi River. Journal of Freshwater Ecology 35: 57–71.

    Article  Google Scholar 

  • Cheng, F., W. Li, L. Castello, B. R. Murphy & S. G. **e, 2015. Potential effects of dam cascade on fish: lessons from the Yangtze River. Reviews in Fish Biology and Fisheries 25: 569–585.

    Article  Google Scholar 

  • Da Silva, P. S., M. C. Makrakis, L. E. Miranda, S. Makrakis, L. Assumpção, S. Paula, J. H. P. Dias & H. Marques, 2015. Importance of reservoir tributaries to spawning of migratory fish in the upper Paraná River. River Research and Applications 31: 313–322.

    Article  Google Scholar 

  • Deng, H. T., Y. Li, M. D. Liu, X. B. Duan, S. P. Liu & D. Q. Chen, 2018. Stable isotope analysis reveals the importance of riparian resources as carbon subsidies for fish species in the Daning River, a tributary of the Three Gorges Reservoir. China. Water 10: 1233.

    Article  Google Scholar 

  • Ding, R. H., 1994. The Fishes of Sichuan, Sichuan Publishing House of Science and Technology, Chengdu, China, China: ((In Chinese)).

    Google Scholar 

  • Dou, W. Q., W. T. Jia, J. H. Zhang, X. M. Yi, Z. F. Wen, S. J. Wu & M. H. Ma, 2023. Research progress of vegetation status, adaptive strategies and ecological restoration in the water-level fluctuation zones of the Three Gorges Reservoir. Chinese Journal of Ecology 42: 208–218. (In Chinese with English Abstract)

    Google Scholar 

  • Eadie, J. M. A. & A. Keast, 1984. Resource heterogeneity and fish species diversity in lakes. Canadian Journal of Zoology 62: 1689–1695.

    Article  Google Scholar 

  • Eddy, T. D., V. W. Lam, G. Reygondeau, A. M. Cisneros-Montemayor, K. Greer, M. L. D. Palomares, J. F. Bruno, Y. Ota & W. W. Cheung, 2021. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4: 1278–1285.

    Article  Google Scholar 

  • Eitzmann, J. L. & C. P. Paukert, 2010. Longitudinal differences in habitat complexity and fish assemblage structure of a Great Plains River. The American Midland Naturalist 163: 14–32.

    Article  Google Scholar 

  • Felden, J., I. González-Bergonzoni, A. M. Rauber, M. da Luz Soares, M. V. Massaro, R. Bastian & D. A. Reynalte-Tataje, 2021. Riparian forest subsidises the biomass of fish in a recently formed subtropical reservoir. Ecology of Freshwater Fish 30: 197–210.

    Article  Google Scholar 

  • Fox, J. & S. Weisberg, 2011. An R companion to applied regression, 2nd ed. Thousand Oaks, Sage:

    Google Scholar 

  • Gao, X., Y. Zeng, J. W. Wang & H. Z. Liu, 2010. Immediate impacts of the second impoundment on fish communities in the Three Gorges Reservoir. Environmental Biology of Fishes 87: 163–173.

    Article  Google Scholar 

  • Gladyshev, M. I., N. N. Sushchik, A. P. Tolomeev & Y. Y. Dgebuadze, 2018. Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish. Reviews in Fish Biology and Fisheries 28: 277–299.

    Article  Google Scholar 

  • Heidrich, L., S. Bae, S. Levick, S. Seibold, W. Weisser, P. Krzystek, P. Magdon, T. Nauss, P. Schall, A. Serebryanyk, S. Wöllauer, C. Ammer, C. Bässler, I. Doerfler, M. Fischer, M. M. Gossner, M. Heurich, T. Hothorn, K. Jung, H. Kreft, E. D. Schulze, N. Simons, S. Thorn & J. Müller, 2020. Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nature Ecology & Evolution 4: 1204–1212.

    Article  Google Scholar 

  • Hladík, M. & J. Kubecka, 2004. The effect of water level fluctuation on tributary spawning migration of reservoir fish. International Journal of Ecohydrology and Hydrobiology 4: 449–457.

    Google Scholar 

  • ICOLD (International Commission on Large Dams), 2019. Number of Dams by Country Members. http://www.icold-cigb.org/.

  • Järvalt, A., T. Krause & A. Palm, 2005. Diel migration and spatial distribution of fish in a small stratified lake. Hydrobiologia 547: 197–203.

    Article  Google Scholar 

  • Khalsa, N. S., K. P. Gatt, T. M. Sutton & A. L. Kelley, 2021. Characterization of the abiotic drivers of abundance of nearshore Arctic fishes. Ecology and Evolution 11: 11491–11506.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovalenko, K. E., S. M. Thomaz & D. M. Warfe, 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685: 1–17.

    Article  Google Scholar 

  • Lapointe, N. W. R., 2014. Effects of shoreline type, riparian zone and instream microhabitat on fish species richness and abundance in the Detroit River. Journal of Great Lakes Research 40: 62–68.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology, Elsevier, New York:

    Google Scholar 

  • Lenth, R. V., P. Buerkner, M. Herve, J. Love, F. Miguez, H. Riebl & H. Singmann, 2022. emmeans: estimated marginal means, aka least-squares mean. R Package Version 1(7): 3.

    Google Scholar 

  • Li, X., Y. R. Li, L. Chu, R. Zhu, L. Z. Wang & Y. Z. Yan, 2016. Influences of local habitat, tributary position, and dam characteristics on fish assemblages within impoundments of low-head dams in the tributaries of the Qingyi River, China. Zoological Research 37: 67–74.

    PubMed  PubMed Central  Google Scholar 

  • Liao, C. S., S. B. Chen, S. S. De Silva, S. B. Correa, J. Yuan, T. L. Zhang, Z. J. Li & J. S. Liu, 2018a. Spatial changes of fish assemblages in relation to filling stages of the Three Gorges Reservoir, China. Journal of Applied Ichthyology 34: 1293–1303.

    Article  Google Scholar 

  • Liao, C. S., S. B. Chen, Z. Q. Guo, S. W. Ye, T. L. Zhang, Z. J. Li, B. R. Murphy & J. S. Liu, 2018b. Species-specific variations in reproductive traits of three yellow catfish species (Pelteobagrus spp) in relation to habitats in the Three Gorges Reservoir, China. Plos One 13: e0199990.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao, C. S., S. B. Chen, S. B. Correa, W. Li, T. L. Zhang & J. S. Liu, 2019. Impoundment led to spatial trophic segregation of three closely related catfish species in the Three Gorges Reservoir, China. Marine and Freshwater Research 71: 750–760.

    Article  Google Scholar 

  • Lin, J. Q., Q. D. Peng, J. Ren, H. X. Bai & L. Zhao, 2014. Similarity analysis of fish habitats between the Chishui River and downstream reaches of the **sha River. Freshwater Fisheries 44: 93–99 (In Chinese with English Abstract).

    Google Scholar 

  • Liu, J. K. & W. X. Cao, 1992. Fish resources of the Yangtze River basin and the tactics for their conservation. Resources and Environment in the Yangtze Valley 1: 17–23 (In Chinese with English Abstract).

    Google Scholar 

  • Loisl, F., G. Singer & H. Keckeis, 2014. Method-integrated fish assemblage structure at two spatial scales along a free-flowing stretch of the Austrian Danube. Hydrobiologia 729: 77–94.

    Article  Google Scholar 

  • López-Delgado, E. O., K. O. Winemiller & F. A. Villa-Navarro, 2020. Local environmental factors influence beta-diversity patterns of tropical fish assemblages more than spatial factors. Ecology 101: e02940.

    Article  PubMed  Google Scholar 

  • Lu, L. & P. Yang, 2020. Runoff characteristics in the Downstream of the Three Gorges Reservoir Dam from 1956 to 2017. Ecology and Environmental Monitoring of Three Gorges 5: 55–60 (In Chinese with English Abstract).

    Google Scholar 

  • Lund, S. S., F. Landkildehus, M. Søndergaard, T. L. Lauridsen, S. Egemose, H. S. Jensen, F. Andersen, L. S. Johansson, M. Ventura & E. Jeppesen, 2010. Rapid changes in fish community structure and habitat distribution following the precipitation of lake phosphorus with aluminium. Freshwater Biology 55: 1036–1049.

    Article  Google Scholar 

  • MacArthur, R. H. & J. W. MacArthur, 1961. On bird species diversity. Ecology 42: 594–598.

    Article  Google Scholar 

  • Marques, H., J. H. P. Dias, G. Perbiche-Neves, E. A. L. Kashiwaqui & I. P. Ramos, 2018. Importance of dam-free tributaries for conserving fish biodiversity in Neotropical reservoirs. Biological Conservation 224: 347–354.

    Article  Google Scholar 

  • Marshall, S. M., T. Espinoza & A. J. Mcdougall, 2015. Effects of Water Level Fluctuations on Spawning Habitat of an Endangered Species, the Australian Lungfish (Neoceratodus Forsteri). River Research and Application 31: 552–562.

    Article  Google Scholar 

  • Matthews, W. J., K. B. Gido & F. P. Gelwick, 2004. Fish assemblages of reservoirs, illustrated by Lake Texoma (Oklahoma–Texas, USA) as a representative system. Lake and Reservoir Management 20: 219–239.

    Article  Google Scholar 

  • Mattos, T. M., M. R. Costa, B. C. T. Pinto, J. L. Borges & F. G. Araújo, 2014. To what extent are the fish compositions of a regulated river related to physico-chemical variables and habitat structure? Environmental Biology of Fishes 97: 717–730.

    Article  Google Scholar 

  • Meerhoff, M. & M. D. L. Á. González-Sagrario, 2022. Habitat complexity in shallow lakes and ponds: importance, threats, and potential for restoration. Hydrobiologia 849: 3737–3760.

    Google Scholar 

  • Miao, B. G., Y. Q. Peng, D. R. Yang, B. Guénard & C. Liu, 2022. Diversity begets diversity: low resource heterogeneity reduces the diversity of nut-nesting ants in rubber plantations. Insect Science 29: 932–941.

    Article  PubMed  Google Scholar 

  • Montag, L. F., K. O. Winemiller, F. W. Keppeler, H. Leão, N. L. Benone, N. R. Torres, B. S. Prudente, T. O. Begot, L. M. Bower, D. E. Saenz, E. O. Lopez-Delgado, Y. Quintana, D. J. Hoeinghaus & L. Juen, 2019. Land cover, riparian zones and instream habitat influence stream fish assemblages in the eastern Amazon. Ecology of Freshwater Fish 28: 317–329.

    Article  Google Scholar 

  • Moreira, M. F., A. Peressin & P. S. Pompeu, 2022. Small rivers, great importance: refuge and growth sites of juvenile migratory fishes in the upper Sao Francisco Basin, Brazil. Fisheries Management and Ecology. https://doi.org/10.1111/fme.12595.

    Article  Google Scholar 

  • Norris, D. M., H. R. Hatcher, M. E. Colvin, G. Coppola, M. A. Lashley & L. E. Miranda, 2020. Assessing establishment and growth of agricultural plantings on reservoir mudflats. North American Journal of Fisheries Management 40: 394–405.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2020. vegan: Community Ecology Package. R package version 2.5.7

  • Ostrand, K. G. & G. R. Wilde, 2001. Temperature, dissolved oxygen, and salinity tolerances of five prairie stream fishes and their role in explaining fish assemblage patterns. Transactions of the American Fisheries Society 130: 742–749.

    Article  Google Scholar 

  • Pelicice, F. M., P. S. Pompeu & A. A. Agostinho, 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries 16: 697–715.

    Article  Google Scholar 

  • Perera, H. A. C. C., Z. J. Li, S. S. De Silva, T. L. Zhang, J. Yuan, S. W. Ye, Y. G. **a & J. S. Liu, 2014. Effect of the distance from the dam on river fish community structure and compositional trends, with reference to the Three Gorges Dam, Yangtze River, China. Acta Hydrobiologica Sinica 38: 438–445.

    Google Scholar 

  • Perônico, P. B., C. S. Agostinho, R. Fernandes & F. M. Pelicice, 2020. Community reassembly after river regulation: rapid loss of fish diversity and the emergence of a new state. Hydrobiologia 847: 519–533.

    Article  Google Scholar 

  • Pfauserová, N., M. Brabec, O. Slavík, P. Horký, V. Žlábek & M. Hladík, 2022. Effects of physical parameters on fish migration between a reservoir and its tributaries. Scientific Reports 12: 8612.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prchalová, M., J. Kubečka, M. Vašek, J. Peterka, J. Seďa, T. Jůza, M. Říha, O. Jarolím, M. Tušer, M. Kratochvíl, M. Čech, V. Draštík, J. Frouzová & E. Hohausová, 2008. Distribution patterns of fishes in a canyon-shaped reservoir. Journal of Fish Biology 73: 54–78.

    Article  Google Scholar 

  • Prchalová, M., J. Kubečka, M. Čech, J. Frouzová, V. Draštík, E. Hohausová, T. Juza, M. Kratochvíl, J. Matěna, J. Peterka, M. Ríha, M. Tušer & M. Vašek, 2009. The effect of depth, distance from dam and habitat on spatial distribution of fish in an artificial reservoir. Ecology of Freshwater Fish 18: 247–260.

    Article  Google Scholar 

  • Probst, W. N., S. Stoll, L. Peters, P. Fischer & R. Eckmann, 2009. Lake water level increase during spring affects the breeding success of bream Abramis brama (L.). Hydrobiologia 632: 211–224.

    Article  Google Scholar 

  • Říha, M., R. Rabaneda-Bueno, I. Jarić, A. T. Souza, L. Vejřík, V. Draštík, P. Blabolil, M. Holubová, T. Jůza, K. Gjelland, P. Rychtecký, Z. Sajdlová, L. Kočvara, M. Tušer, M. Prchalová, J. Seďa & J. Peterka, 2022. Seasonal habitat use of three predatory fishes in a freshwater ecosystem. Hydrobiologia 849: 3351–3371.

    Article  Google Scholar 

  • Sá-Oliveira, J. C., J. E. Hawes, V. J. Isaac-Nahum & C. A. Peres, 2015. Upstream and downstream responses of fish assemblages to an eastern Amazonian hydroelectric dam. Freshwater Biology 60: 2037–2050.

    Article  Google Scholar 

  • Smith, J. M. & M. E. Mather, 2013. Beaver dams maintain fish biodiversity by increasing habitat heterogeneity throughout a low gradient stream network. Freshwater Biology 58: 1523–1538.

    Article  Google Scholar 

  • Specziár, A., Á. I. György & T. Erős, 2013. Within-lake distribution patterns of fish assemblages: the relative roles of spatial, temporal and random environmental factors in assessing fish assemblages using gillnets in a large and shallow temperate lake. Journal of Fish Biology 82: 840–855.

    Article  PubMed  Google Scholar 

  • Spurgeon, J. J., M. A. Pegg, P. Parasiewicz & J. Rogers, 2018. Diversity of river fishes influenced by habitat heterogeneity across hydrogeomorphic divisions. River Research and Applications 34: 797–806.

    Article  Google Scholar 

  • Szalóky, Z., V. Füstös, B. Tóth & T. Erős, 2021. Environmental drivers of benthic fish assemblages and fish-habitat associations in offshore areas of a very large river. River Research and Applications 37: 712–721.

    Article  Google Scholar 

  • Togaki, D., M. Inoue & K. Ikari, 2023. Seasonal habitat use by warmwater fishes in a braided river, southwestern Japan: effects of spatiotemporal thermal heterogeneity. Ichthyological Research 70: 91–100.

    Article  Google Scholar 

  • Toussaint, A., N. Charpin, S. Brosse & S. Villéger, 2016. Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Scientific Reports 6: 22125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turgeon, K., C. Turpin & I. Gregory-Eaves, 2019. Dams have varying impacts on fish communities across latitudes: a quantitative synthesis. Ecology Letters 22: 1501–1516.

    Article  PubMed  Google Scholar 

  • Vasconcelos, L. P., D. C. Alves, L. F. da Camara & L. Hahn, 2021. Dams in the Amazon: the importance of maintaining free-flowing tributaries for fish reproduction. Aquatic Conservation: Marine and Freshwater Ecosystems 31: 1106–1116.

    Article  Google Scholar 

  • Vitorino Junior, O. B., R. Fernandes, C. S. Agostinho & F. M. Pelicice, 2016. Riverine networks constrain β-diversity patterns among fish assemblages in a large Neotropical river. Freshwater Biology 61: 1733–1745.

    Article  CAS  Google Scholar 

  • Wang, W. J., L. Chu, C. Si, R. Zhu, W. H. Chen, F. M. Chen & Y. Z. Yan, 2013. Spatial and temporal patterns of stream fish assemblages in the Qiupu Headwaters National Wetland Park. Zoological Research 34: 417–428 (In Chinese with English Abstract).

    PubMed  Google Scholar 

  • Wegscheider, B., T. Linnansaari, C. C. Wall, M. D. Gautreau, W. A. Monk, R. Dolson-Edge, K. M. Samways & R. A. Curry, 2020. Diel patterns in spatial distribution of fish assemblages in lentic and lotic habitat in a regulated river. River Research and Applications 36: 1014–1023.

    Article  Google Scholar 

  • Wei, N., Y. Zhang, F. Wu, Z. W. Shen, H. J. Ru & Z. H. Ni, 2021. Current status and changes in fish assemblages in the Three Gorges Reservoir. Resources and Environment in the Yangtze Valley 30: 1858–1869 (In Chinese with English Abstract).

    Google Scholar 

  • Wen, G., S. Wang, R. H. Cao, C. C. Wen, M. Yang & T. L. Huang, 2022. A review of the formation causes, ecological risks and water quality responses of metalimnetic oxygen minimum in lakes and reservoirs. Journal of Lake Sciences 34: 711–726 (In Chinese with English Abstract).

    Article  CAS  Google Scholar 

  • Wu, Q., X. B. Duan, S. Y. Xu, C. X. **ong & D. Q. Chen, 2007. Studies on fishery resources in the Three Gorges Reservoir of the Yangtze River. Freshwater Fisheries 37: 70–75 (In Chinese with English Abstract).

    Google Scholar 

  • **ao, Q., Z. Yuan, H. Y. Tang, P. X. Duan, X. Q. Wang, T. Y. **ao & X. Y. Liu, 2015. Species diversity of fish and its conservation in the mainstream of the lower reaches of Wu River. Biodiversity Science 23: 499–506 (In Chinese with English Abstract).

    Article  Google Scholar 

  • Xu, Y. Y., Q. H. Cai, M. L. Shao & X. Q. Han, 2012. Patterns of asynchrony for phytoplankton fluctuations from reservoir mainstream to a tributary bay in a giant dendritic reservoir (Three Gorges Reservoir, China). Aquatic Sciences 74: 287–300.

    Article  CAS  Google Scholar 

  • Yan, Y. Z., X. Y. **ang, L. Chu, Y. J. Zhan & C. Z. Fu, 2011. Influences of local habitat and stream spatial position on fish assemblages in a dammed watershed, the Qingyi stream, China. Ecology of Freshwater Fish 20: 199–208.

    Article  Google Scholar 

  • Yang, S. R., X. Gao, M. Z. Li, B. S. Ma & H. Z. Liu, 2012. Interannual variations of the fish assemblage in the transitional zone of the Three Gorges Reservoir: persistence and stability. Environmental Biology of Fishes 93: 295–304.

    Article  Google Scholar 

  • Yang, Z., X. J. Pan, L. Hu, W. Xu, Y. **, N. Zhao, Q. Yang, X. J. Chen & H. Liu, 2021. Effects of upstream cascade dams and longitudinal environmental gradients on variations in fish assemblages of the Three Gorges Reservoir. Ecology of Freshwater Fish 30: 503–518.

    Article  Google Scholar 

  • Ye, S. W., Z. J. Li & W. X. Cao, 2007. Species composition, diversity and density of small fishes in two different habitats in Niushan Lake. Chinese Journal of Applied Ecology 18: 1589–1595 (In Chinese with English Abstract).

    PubMed  Google Scholar 

  • Zeng, L., L. Zhou, D. L. Guo, D. H. Fu, P. Xu, S. Zeng, Q. D. Tang, A. L. Chen, F. Q. Chen, Y. Luo & G. F. Li, 2017. Ecological effects of dams, alien fish, and physiochemical environmental factors on homogeneity/heterogeneity of fish community in four tributaries of the Pearl River in China. Ecology and Evolution 7: 3904–3915.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, S. S., S. W. Ye, S. G. **e & F. Cheng, 2015. The current situation of fishery resources in the **angxi River of the Three Gorges Reservoir and advices on the management. Acta Hydrobiologica Sinica 39: 973–982 (In Chinese with English Abstract).

    Google Scholar 

  • Zhu, K. W., Y. C. Chen, S. Zhang, B. Lei, Z. M. Yang & L. Huang, 2020. Vegetation of the water-level fluctuation zone in the Three Gorges Reservoir at the initial impoundment stage. Global Ecology and Conservation 21: e00866.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Earmarked Fund for China Agriculture Research System (CARS-45), the National Natural Science Foundation of China (32102798), and the China Postdoctoral Science Foundation (2020M672448). S.B. Correa was supported by the Forest and Wildlife Research Center of Mississippi State University, USA (MISZ-081700).

Funding

The Earmarked Fund for China Agriculture Research System, CARS-45, Chuanbo Guo, The National Natural Science Foundation of China, 32102798, Chuansong Liao, The China Postdoctoral Science Foundation, 2020M672448, Chuansong Liao, Byrd Polar and Climate Research Center, Ohio State University, MISZ-081700, Sandra Bibiana Correa.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by LC, YS, ZD, YJ, SBC, WF, ZC, FL, GC, and LJ. The first draft of the manuscript was written by LC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiashou Liu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to this article.

Ethical approval

The manuscript has not been published or is under consideration for publication elsewhere, in whole or in part.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling editor: Fernando M. Pelicice

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, C., Ye, S., Zhai, D. et al. Tributaries create habitat heterogeneity and enhance fish assemblage variation in one of the largest reservoirs in the world. Hydrobiologia 850, 4311–4326 (2023). https://doi.org/10.1007/s10750-023-05306-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05306-3

Keywords

Navigation