Log in

Macroinvertebrate abundance is lower in temperate reservoirs with higher winter drawdown

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Hydrological regime alteration in reservoirs is a major anthropogenic disturbance in aquatic ecosystems. We examined winter drawdown effects on macroinvertebrate abundance and community composition in reservoirs while accounting for localized physical variables that might explain additional variability. We hypothesized that drawdown would affect the abundance and the community composition of macroinvertebrates because of the exposure of organisms to freezing and desiccation. However, we expected the detection and magnitude of these responses to be conditional on localized physical habitat variables (i.e., fetch, thermal condition and slope), which also influence abundance and community composition of macroinvertebrates. To test these hypotheses, we applied generalized linear mixed effects models and multivariate analyses to data collected from 118 samples in 15 temperate reservoirs. Sampling stations from reservoirs that experienced high winter drawdown and/or were below the thermocline showed significantly lower macroinvertebrate abundances. Changes in community composition across sites were muted as chironomids, oligochaetes and sphaeriids dominated all assemblages. Decreases in macroinvertebrate abundances with drawdown amplitude and lower temperatures (i.e., hypolimnion) could have implications for food web structure, as they substantially contribute to fish diet, and ecosystem functions (e.g., nutrient cycling).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, N. H. & K. W. Cummins, 1979. Influences of diet on the life histories of aquatic insects. Journal of the Fisheries Research Board of Canada 36: 335–342.

    Article  Google Scholar 

  • Anderson-Nichols and Company, Inc., 1978. Lake Memphremagog, Vermont: A Hydrologic and Hydraulic Analysis. Anderson-Nichols and Company, Inc., Barre.

    Google Scholar 

  • Aroviita, J. & H. Hämäläinen, 2008. The impact of water-level regulation on littoral macroinvertebrate assemblages in boreal lakes. Hydrobiologia 613: 45–56.

    Article  Google Scholar 

  • Bailey, R. C., R. H. Norris & T. B. Reynoldson, 2001. Taxonomic resolution of benthic macroinvertebrate communities in bioassessments. Journal of the North American Benthological Society 20: 280–286.

    Article  Google Scholar 

  • Barko, J. W. & W. F. James, 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, Cham: 197–214.

    Chapter  Google Scholar 

  • Baumgärtner, D., 2004. Principles of Macroinvertebrate Community Structure in the Littoral Zone of Lake Constance. University of Konstanz.

  • Baxter, R. M., 1977. Environmental effects of dams and impoundments. Annual Review of Ecology and Systematics 8: 255–283.

    Article  Google Scholar 

  • Beckett, D. C., T. P. Aartila & A. C. Miller, 1992. Contrasts in density of benthic invertebrates between macrophyte beds and open littoral patches in Eau Galle Lake, Wisconsin. American Midland Naturalist 127: 77–90.

    Article  Google Scholar 

  • Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J.-S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution 24: 127–135.

    Article  Google Scholar 

  • Bowman, M. F. & R. C. Bailey, 1997. Does taxonomic resolution affect the multivariate description of the structure of freshwater benthic macroinvertebrate communities? Canadian Journal of Fisheries and Aquatic Sciences 54: 1802–1807.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson (eds), 2004. Model Selection and Multimodel Inference. Springer, New York.

    Google Scholar 

  • Caires, A. M. & S. Chandra, 2012. Conversion factors as determined by relative macroinvertebrate sampling efficiencies of four common benthic grab samplers. Journal of Freshwater Ecology 27: 97–109.

    Google Scholar 

  • Carmignani, J. R. & A. H. Roy, 2017. Ecological impacts of winter water level drawdowns on lake littoral zones: a review. Aquatic Sciences. https://doi.org/10.1007/s00027-017-0549-9.

    Article  Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.

    Article  Google Scholar 

  • Charest, R., S. Poulin & M. Daoudi, 2008. Synthèse des connaissances – Parc national de Frontenac. Parcs Québec, Parc national de Frontenac.

  • Diehl, S., 1992. Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73: 1646–1661.

    Article  Google Scholar 

  • Elchyshyn, L., J.-O. Goyette, É. Saulnier-Talbot, R. Maranger, C. Nozais, C. T. Solomon & I. Gregory-Eaves, 2018. Quantifying the effects of hydrological changes on long-term water quality trends in temperate reservoirs: insights from a multi-scale, paleolimnological study. Journal of Paleolimnology 60: 361–379.

    Article  Google Scholar 

  • Furey, P. C., R. N. Nordin & A. Mazumder, 2004. Water level drawdown affects physical and biogeochemical properties of littoral sediments of a reservoir and a natural lake. Lake and Reservoir Management 20: 280–295.

    Article  CAS  Google Scholar 

  • Furey, P. C., R. N. Nordin & A. Mazumder, 2006. Littoral benthic macroinvertebrates under contrasting drawdown in a reservoir and a natural lake. Journal of the North American Benthological Society 25: 19–31.

    Article  Google Scholar 

  • Hershey, A. E., G. A. Lamberti, D. T. Chaloner & R. M. Northington, 2010. Aquatic insect ecology. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates. Elsevier, Inc., Amsterdam: 659–694.

    Chapter  Google Scholar 

  • Jones, F. C., 2008. Taxonomic sufficiency: the influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews 16: 45–69.

    Article  Google Scholar 

  • Legendre, P. & L. F. J. Legendre, 2012. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Leira, M. & M. Cantonati, 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613: 171–184.

    Article  Google Scholar 

  • Levesque, P., 2003. État de la communauté ichtyologique du lac Aylmer et particulièrement de la population de doré jaune (Stizostedion vitreum) 1998–2001. Société de la Faune et des parcs du Québec, Direction de l’aménagement de la faune de l’Estrie.

  • Lindström, T., 1973. Life in a lake reservoir: fewer options, decreased production. Ambio 2: 145–153.

    Google Scholar 

  • McEwen, D. C. & M. G. Butler, 2010. The effects of water-level manipulation on the benthic invertebrates of a managed reservoir. Freshwater Biology 55: 1086–1101.

    Article  Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America. Kendall Hunt, Dubuque.

    Google Scholar 

  • Mörtl, M., 2003. Biotic Interactions in the Infralittoral of Lake Constance. University of Konstanz.

  • Nalepa, T. F., M. A. Quigley & R. W. Ziegler, 1988. Sampling efficiency of the Ponar grab in two different benthic environments. Journal of Great Lakes Research 14: 89–93.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2015. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. https://cran.r-project.org/web/packages/vegan/index.html.

  • Plante, C. & J. A. Downing, 1989. Production of freshwater invertebrate populations in lakes. Canadian Journal of Fisheries and Aquatic Sciences 46: 1489–1498.

    Article  Google Scholar 

  • Prairie, Y. & A. Soucisse, 1999. Rapport sur le suivi de la qualité des eaux. Département des sciences biologiques, Université du Québec à Montréal.

  • Quennerstedt, N., 1958. Effect of water level fluctuation on lake vegetation. Verhandlungen der internationalen Vereinigung für theoretische und angewandte Limnologie 13: 901–906.

    Google Scholar 

  • R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.

  • Rabe, F. W. & F. Gibson, 1984. The effect of macrophyte removal on the distribution of selected invertebrates in a littoral environment. Journal of Freshwater Ecology 2: 359–371.

    Article  Google Scholar 

  • RAPPEL, 2006. Diagnostic environnemental global du bassin versant immédiat du lac Massawippi. Association pour la protection du lac Massawippi, Inc.

  • Rasmussen, J. B., 1988. Littoral zoobenthic biomass in lakes, and its relationship to physical, chemical, and trophic factors. Canadian Journal of Fisheries and Aquatic Sciences 45: 1436–1447.

    Article  CAS  Google Scholar 

  • Rasmussen, J. B. & D. J. Rowan, 1997. Wave velocity thresholds for fine sediment accumulation in lakes, and their effect on zoobenthic biomass and composition. Journal of the North American Benthological Society 16: 449–465.

    Article  Google Scholar 

  • Rodhe, W., 1964. Effects of impoundment on water chemistry and plankton in Lake Ransaren (Swedish Lappland). Verhandlungen der internationalen Vereinigung für theoretische und angewandte Limnologie 15: 437–443.

    Google Scholar 

  • Rosenberg, D. M., P. McCully & C. M. Pringle, 2000. Global-scale environmental effects of hydrological alterations: introduction. BioScience 50: 746–751.

    Article  Google Scholar 

  • Scheifhacken, N., C. Fiek & K.-O. Rothhaupt, 2007. Complex spatial and temporal patterns of littoral benthic communities interacting with water level fluctuations and wind exposure in the littoral zone of a large lake. Fundamental and Applied Limnology – Archiv für Hydrobiologie 169: 115–129.

    Article  Google Scholar 

  • Schwarz, G., 1978. Estimating the dimension of a model. The Annals of Statistics 6: 461–464.

    Article  Google Scholar 

  • Skaug, H., D. Fournier, B. Bolker, A. Magnusson & A. Nielsen, 2015. Generalized linear mixed models using AD Model Builder. http://glmmadmb.r-forge.r-project.org/.

  • Vadeboncoeur, Y., M. J. V. Zanden & D. M. Lodge, 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. BioScience 52: 44–54.

    Article  Google Scholar 

  • Vermaire, J. C., Y. T. Prairie & I. Gregory-Eaves, 2011. The influence of submerged macrophytes on sedimentary diatom assemblages. Journal of Phycology 47: 1230–1240.

    Article  CAS  Google Scholar 

  • Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    Article  Google Scholar 

  • Wagner, T. & C. M. Falter, 2002. Response of an aquatic macrophyte community to fluctuating water levels in an oligotrophic lake. Lake and Reservoir Management 18: 52–65.

    Article  Google Scholar 

  • Warwick, R. M., 1988. The level of taxonomic discrimination required to detect pollution effects on marine benthic communities. Marine Pollution Bulletin 19: 259–268.

    Article  Google Scholar 

  • Weatherhead, M. A. & M. R. James, 2001. Distribution of macroinvertebrates in relation to physical and biological variables in the littoral zone of nine New Zealand lakes. Hydrobiologia 462: 115–129.

    Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Gulf Professional Publishing, Houston.

    Google Scholar 

  • White, M. S., M. A. Xenopoulos, K. Hogsden, R. A. Metcalfe & P. J. Dillon, 2008. Natural lake level fluctuation and associated concordance with water quality and aquatic communities within small lakes of the Laurentian Great Lakes region. Hydrobiologia 613: 21–31.

    Article  CAS  Google Scholar 

  • White, M. S., M. A. Xenopoulos, R. A. Metcalfe & K. M. Somers, 2010. On the role of natural water level fluctuation in structuring littoral benthic macroinvertebrate community composition in lakes. Limnology and Oceanography 55: 2275–2284.

    Article  Google Scholar 

  • White, M. S., M. A. Xenopoulos, R. A. Metcalfe & K. M. Somers, 2011. Water level thresholds of benthic macroinvertebrate richness, structure, and function of boreal lake stony littoral habitats. Canadian Journal of Fisheries and Aquatic Sciences 68: 1695–1704.

    Article  Google Scholar 

  • Wilcox, D. A. & J. E. Meeker, 1992. Implications for faunal habitat related to altered macrophyte structure in regulated lakes in northern Minnesota. Wetlands 12: 192–203.

    Article  Google Scholar 

  • Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Conseil Régional de l’Environnement Chaudière-Appalaches (CRECA), Parc National de Frontenac, Regroupement pour la Protection du Grand Lac St-François (RPGLSF), Fondation de la Faune du Québec, Centre de la Science de la Biodiversité du Québec (CSBQ), Mathematics of Information Technology and Complex Systems (MITACS) and WSP Global Group, Inc., as well as McGill University and Université du Québec à Rimouski (UQAR). We thank many assistants for their hard work in the field. We are also very appreciative of Cristian Correa’s assistance both in the field and with the preliminary reservoir selection process. Three anonymous reviewers provided helpful comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabrielle Trottier.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2019_3922_MOESM1_ESM.xlsx

Supplementary material 1 (XLSX 53 kb) Table A1 Table showing the temperature (°C, degree Celsius) and dissolved oxygen (DO, mg/l) as a function of depth profile at the deepest point of each reservoir. Thermocline is identified by the dashed boxes in the table. In reservoirs labelled with as asterisk, DO was converted from % saturation values to mg/l values with USGS DOTABLES—Single-Value Computation (https://water.usgs.gov/software/DOTABLES/) using local temperature and barometric pressure data. The deepest Ponar grab in each reservoir was collected at 16 m, with the exception of two reservoirs (FLA and UMB) where the deepest site was indeed oxygen-rich (> 6 mg/l oxygen). Cells with “–” mean that this particular depth was not sampled and empty cells mean that the reservoirs did not encompass those depths (i.e., shallower water bodies)

10750_2019_3922_MOESM2_ESM.xlsx

Supplementary material 2 (XLSX 67 kb) Table A2 Raw data tables detailing sample number (SAMPLE_NUM), sample name (SAMPLE_NAME), fetch in kilometers (FETCH_KM), percentage of slope (SLOPE_PERCENT), distance to shore in meters (DIS_TO_SHORE_M), thermal regime (THERMAL_REG), all taxa that were identified in this study are alphabetically sorted and grouped by orders (see Table A3 for metadata on the code names used for each taxa), where taxa column that make up for more than 5% of the total number of organisms identified is bolded, and lastly, the total abundance per grab (TOTAL_AB_PER_GRAB) as well as the total abundance/m2 (TOTAL_AB_PER_M2; n = 118)

10750_2019_3922_MOESM3_ESM.xlsx

Supplementary material 3 (XLSX 46 kb) Table A3 Metadata detailing the taxonomy (phylum, class, order and family) of all taxa as well as their code names. “NA” does not mean that this specific level of taxonomy is not available, it means that taxa were not further identified for this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trottier, G., Embke, H., Turgeon, K. et al. Macroinvertebrate abundance is lower in temperate reservoirs with higher winter drawdown. Hydrobiologia 834, 199–211 (2019). https://doi.org/10.1007/s10750-019-3922-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3922-y

Keywords

Navigation