Log in

Modern chironomids (Diptera: Chironomidae) and the environmental variables that influence their distribution in the Araucanian lakes, south-central Chile

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Detailed studies of Chironomidae fauna can yield a reliable tool to evaluate the effects of climatic change and anthropogenic disturbances over freshwater ecosystems. Using modern chironomid remains deposited in surface sediment samples of 27 lakes located in south-central Chile (37° S–41° S), we investigated the spatial distribution and diversity of chironomids in association with climatic and limnological variables. Linear methods and ordination analyses were used to select the best explanatory environmental variables that influence the diversity and distribution of chironomids among sites. We identified 52 chironomid taxa, highlighting Tanytarsini-tribe, Ablabesmyia, and Parapsectrocladius as the most common. Our results suggest air temperature as the most important and significant factor controlling the distribution of chironomids among the Araucanian lakes, followed by water temperature, and dissolved oxygen. The diversity of chironomids is negatively correlated with parameters related to lake productivity. Orthocladiinae and Podonominae subfamilies are most frequent in high-altitude lakes associated with cold temperatures, whereas Chironominae and Tanypodinae are characteristic of lowland-lakes influenced by higher temperatures. Human-induced contamination of freshwater ecosystems and the ongoing climate change in south-central Chile represent the main threat to macroinvertebrates communities, and therefore a challenge to predict the trajectories of chironomid assemblages in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander, T. J., P. Vonlanthen & O. Seehausen, 2017. Does eutrophication-driven evolution change aquatic ecosystems? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 372: 20160041.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen, T., P. S. Cranston & J. H. Epler, 2013. The larvae of Chironomidae (Diptera) of the Holarctic Region. Keys and diagnoses. Insect Systematics & Evolution Suppl 66: 1–571.

    Google Scholar 

  • American Public Health Association (APHA), 2005. Standard Methods for the Examination of Water & Wastewater. APHA, Washington, DC.

    Google Scholar 

  • Araneda, A., P. Jana, C. Ortega, F. Torrejón, S. Bertrand, P. Vargas, N. Fagel, D. Alvarez, A. Stehr & R. Urrutia, 2013. Changes in sub-fossil chironomid assemblages in two Northern Patagonian lake systems associated with the occurrence of historical fires. Journal of Paleolimnology 50: 41–56.

    Article  Google Scholar 

  • Araya-Osses, D., A. Casanueva, C. Román-Figueroa, J. M. Uribe & M. Paneque, 2020. Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Climate Dynamics 54: 4309–4330.

    Article  Google Scholar 

  • Armitage, P., P. S. Cranston & L. C. V. Pinder, 1995. The Chironomidae: the biology and ecology of non-biting midges. Chapman and Hall, London.

    Book  Google Scholar 

  • Ashe, P., D. A. Murray & F. Reiss, 1987. The zoogeographical distribution of Chironomidae (Insecta: Diptera). Annales de Limnologie 23: 27–60.

    Article  Google Scholar 

  • Birks, H. J. B., 2012. Introduction and Overview of Part II. In Birks, H. J. B., A. F. Lotter, S. Juggins & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques. Springer, Dordrecht: 101–121.

    Chapter  Google Scholar 

  • Blanchard, E., 1852. Orden IX. Dípteros. In Gay, C. (ed.), Historía física y política de Chile Zoologia Tomo Sétimo. Imprenta de Maulde y Renau, Paris: 327–468.

    Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2011. Canonical Ordination Numerical Ecology with R. Springer, New York: 153–225.

    Book  Google Scholar 

  • Brodersen, K. P. & B. G. Andersen, 2000. Subfossil insect remains (Chironomidae) and lake-water temperature inference in the Sisimiut - Søndre Strømfjord region, southern West Greenland. Geology of Greenland Survey Bulletin 186: 78–82.

    Article  Google Scholar 

  • Brodersen, K. P. & N. J. Anderson, 2002. Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology 47: 1137–1157.

    Article  Google Scholar 

  • Brodersen, K. P., B. V. Odgaard, O. Vestergaard & N. J. Anderson, 2001. Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaard, Denmark: chironomid–macrophyte co-occurrence. Freshwater Biology 46: 253–267.

    Article  Google Scholar 

  • Brodersen, K. P., O. Pedersen, C. Lindegaard & K. Hamburger, 2004. Chironomids (Diptera) and oxy-regulatory capacity: an experimental approach to paleolimnological interpretation. Limnology and Oceanography 49: 1549–1559.

    Article  CAS  Google Scholar 

  • Brodersen, K. P. & R. Quinlan, 2006. Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quaternary Science Reviews 25: 1995–2012.

    Article  Google Scholar 

  • Brooks, S. J., P. G. Langdon & O. Heiri, 2007. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London.

  • Brundin, L., 1966. Transantarctic relationships and their significance, as evidenced by chironomid midges: with a monograph of the subfamilies Podonominae and Aphroteniinae and the Austral Heptogyiae. Almqvist & Wiksell, Stockholm.

    Google Scholar 

  • Chang, J. C., C. Woodward & J. Shulmeister, 2017. Reconstructing terrestrial temperatures in the Australian sub-tropics and tropics: a chironomid-based transfer function approach. Quaternary International 449: 136–148.

    Article  Google Scholar 

  • Clerk, S., R. Hall, R. Quinlan & J. P. Smol, 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. Journal of Paleolimnology 23: 319–336.

    Article  Google Scholar 

  • Cranston, P. S., 1995. Introduction. In Armitage, P., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: The Biology and Ecology of Non-Biting Midges. Chapman & Hall, Londres: 1–7.

    Google Scholar 

  • Cranston, P. S., 2000. Parapsectrocladius: a new genus of Orthocladiinae Chironomidae (Diptera) from Patagonia, the southern Andes. Insect Systematics and Evolution 31: 103–120.

    Google Scholar 

  • di Castri, F. & E. R. Hajek, 1976. Bioclimatología de Chile. Universidad Católica de Chile, Santiago.

    Google Scholar 

  • Donato, M., J. Massaferro & S. J. Brooks, 2009. Current state of the taxonomic knowledge of the Chironomidae fauna (Diptera: Nematocera) from Patagonia. Revista de la Sociedad Entomologica Argentina 68: 187–192.

    Google Scholar 

  • Donato, M., M. Mauad & M. C. Fuentes, 2015. A new species of Parapsectrocladius Cranston (Diptera: Chironomidae: Orthocladiinae) from Patagonia, Argentina. Zootaxa 3911: 547–559.

    Article  PubMed  Google Scholar 

  • Dubois, N., É. Saulnier-Talbot, K. Mills, P. Gell, R. Battarbee, H. Bennion, S. Chawchai, X. Dong, P. Francus, R. Flower, D. F. Gomes, I. Gregory-Eaves, S. Humane, G. Kattel, J. Jenny, P. Langdon, J. Massaferro, S. McGowan, A. Mikomägi, N. T. M. Ngoc, A. S. Ratnayake, M. Reid, N. Rose, J. Saros, D. Schillereff, M. Tolotti & B. Valero-Garcés, 2018. First human impacts and responses of aquatic systems: a review of palaeolimnological records from around the world. The Anthropocene Review 5: 28–68.

    Article  Google Scholar 

  • Edwards, F. W., 1929. Diptera of Patagonia and South Chile. British Museum (Natural History), London.

  • Eggermont, H. & O. Heiri, 2012. The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biological Reviews 87: 430–456.

    Article  PubMed  Google Scholar 

  • Ferrington, L. C., 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595: 447–455.

    Article  Google Scholar 

  • Fick, S. E. & R. J. Hijmans, 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315.

    Article  Google Scholar 

  • Fierro, P., C. Bertrán, M. Mercado, F. Peña-Cortés, J. Tapia, E. Hauenstein, L. Caputo & L. Vargas-Chacoff, 2015. Landscape composition as a determinant of diversity and functional feeding groups of aquatic macroinvertebrates in southern rivers of the Araucanía, Chile. Latin American Journal of Aquatic Research 43: 186–200.

    Article  Google Scholar 

  • Fierro, P., C. Bertrán, J. Tapia, E. Hauenstein, F. Peña-Cortés, C. Vergara, C. Cerna & L. Vargas-Chacoff, 2017. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Science of the Total Environment 609: 724–734.

    Article  CAS  PubMed  Google Scholar 

  • Fierro, P., L. Quilodrán, C. Bertrán, I. Arismendi, J. Tapia, F. Peña-Cortés, E. Hauenstein, R. Arriagada, E. Fernández & L. Vargas-Chacoff, 2016. Rainbow Trout diets and macroinvertebrates assemblages responses from watersheds dominated by native and exotic plantations. Ecological Indicators 60: 655–667.

    Article  CAS  Google Scholar 

  • Fierro, P., C. Valdovinos, I. Arismendi, G. Díaz, M. Ruiz De Gamboa & L. Arriagada, 2019. Assessment of anthropogenic threats to Chilean Mediterranean freshwater ecosystems: literature review and expert opinions. Environmental Impact Assessment Review 77: 114–121.

    Article  Google Scholar 

  • Heiri, O. & A. Lotter, 2008. Chironomidae (Diptera) in alpine lakes: a study of subfossil assemblages in lake surface sediments. Boletim do Museu Municipal do Funchal Supplement 13: 177–184.

    Google Scholar 

  • Heiri, O. & A. F. Lotter, 2010. How does taxonomic resolution affect chironomid-based temperature reconstruction? Journal of Paleolimnology 44: 589–601.

    Article  Google Scholar 

  • Heiri, O. & L. Millet, 2005. Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, france). Journal of Quaternary Science 20: 33–44.

    Article  Google Scholar 

  • Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.

    Article  Google Scholar 

  • Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Article  Google Scholar 

  • Hölker, F., M. J. Vanni, J. J. Kuiper, C. Meile, H.-P. Grossart, P. Stief, R. Adrian, A. Lorke, O. Dellwig, A. Brand, M. Hupfer, W. M. Mooij, G. Nützmann & J. Lewandowski, 2015. Tube-dwelling invertebrates: tiny ecosystem engineers have large effects in lake ecosystems. Ecological Monographs 85: 333–351.

    Article  Google Scholar 

  • Hupfer, M., S. Jordan, C. Herzog, C. Ebeling, R. Ladwig, M. Rothe & J. Lewandowski, 2019. Chironomid larvae enhance phosphorus burial in lake sediments: insights from long-term and short-term experiments. Science of the Total Environment 663: 254–264.

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P. Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. F. Menezes, F. R. S. Freitas, M. Kernan, M. Søndergaard & M. Beklioğlu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.

    Article  Google Scholar 

  • Juggins, S., 2013. Quantitative reconstructions in palaeolimnology: new paradigm or sick science? Quaternary Science Reviews 64: 20–32.

    Article  Google Scholar 

  • Juggins, S. & H. J. B. Birks, 2012. Quantitative environmental reconstructions from biological data. In Birks, H. J. B., A. F. Lotter, S. Juggins & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques. Springer, Netherlands, Dordrecht: 431–494.

    Chapter  Google Scholar 

  • Juggins, S., G. L. Simpson & R. J. Telford, 2015. Taxon selection using statistical learning techniques to improve transfer function prediction. The Holocene 25: 130–136.

    Article  Google Scholar 

  • Langdon, P. G., Z. Ruiz, K. P. Brodersen & I. D. L. Foster, 2006. Assessing lake eutrophication using chironomids: understanding the nature of community response in different lake types. Freshwater Biology 51: 562–577.

    Article  CAS  Google Scholar 

  • Larocque-Tobler, I., I. Laurion, R. Moschen & M. Stewart, 2010. Climate and lacustrine ecosystems. In Dodson, J. (ed.), Changing Climates, Earth Systems and Society. Springer, Netherlands, Dordrecht: 123–160.

    Chapter  Google Scholar 

  • Larocque, I. & R. I. Hall, 2003. Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden. Journal of Paleolimnology 29: 475–493.

    Article  Google Scholar 

  • Legendre, P. & H. J. H. Birks, 2012. Chapter 8: From classical to canonical ordination. In Birks, H. J. B., A. F. Lotter, S. Juggins & J. P. Smol (eds), Tracking environmental change using lake sediments, Vol. 5., Data handling and numerical techniques Springer, Dordrecht: 201–248.

    Chapter  Google Scholar 

  • Lencioni, V., P. Bernabò, S. Vanin, P. Di Muro & M. Beltramini, 2008. Respiration rate and oxy-regulatory capacity in cold stenothermal chironomids. Journal of Insect Physiology 54: 1337–1342.

    Article  CAS  PubMed  Google Scholar 

  • León-Muñoz, J., C. Echeverría, R. Marcé, W. Riss, B. Sherman & J. L. Iriarte, 2013. The combined impact of land use change and aquaculture on sediment and water quality in oligotrophic Lake Rupanco (North Patagonia, Chile, 40.8°S). Journal of Environmental Management 128: 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Leung, A., A. Pinder & D. Edward, 2011. Photographic guide and keys to the larvae of Chironomidae (Diptera) of south-west Western Australia. Part i, key to subfamilies and Tanypodinae.

  • Little, J. L., R. I. Hall, R. Quinlan & J. P. Smol, 2000. Past trophic status and hypolimnetic anoxia during eutrophication and remediation of Gravenhurst Bay, Ontario: comparison of diatoms, chironomids, and historical records. Canadian Journal of Fisheries and Aquatic Sciences 57: 333–341.

    Article  Google Scholar 

  • Massaferro, J., A. Correa-Metrio, F. Montes de Oca & M. Mauad, 2018. Contrasting responses of lake ecosystems to environmental disturbance: a paleoecological perspective from northern Patagonia (Argentina). Hydrobiologia 816: 79–89.

    Article  CAS  Google Scholar 

  • Massaferro, J., S. R. Guevara, A. Rizzo & M. Arribere, 2005. Short-term environmental changes in Lake Morenito (41 degrees S, 71 degrees W, Patagonia, Argentina) from the analysis of sub-fossil chironomids. Aquatic Conservation-Marine and Freshwater Ecosystems 15: 23–30.

    Article  Google Scholar 

  • Massaferro, J. & I. Larocque-Tobler, 2013. Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina. Ecological Indicators 24: 201–210.

    Article  Google Scholar 

  • Massaferro, J., I. Larocque-Tobler, S. J. Brooks, M. Vandergoes, A. Dieffenbacher-Krall & P. Moreno, 2014. Quantifying climate change in Huelmo mire (Chile, Northwestern Patagonia) during the Last Glacial Termination using a newly developed chironomid-based temperature model. Palaeogeography, Palaeoclimatology, Palaeoecology 399: 214–224.

    Article  Google Scholar 

  • Massaferro, J., C. Ortega, R. Fuentes & A. Araneda, 2013. Guia Para la Identificación de Tanytarsini Subfosiles (Diptera: Chironomidae: Chironominae) de la Patagonia. Ameghiniana 50: 319–334.

    Article  Google Scholar 

  • Massaferro, J. & M. Vandergoes, 2007. Chironomid records - Postglacial Southern Hemisphere. In Scott, A. E. (ed.), Encyclopedia of Quaternary Science. Elsevier, Oxford: 398–409.

    Chapter  Google Scholar 

  • Matthews-Bird, F., W. D. Gosling, A. L. Coe, M. Bush, F. E. Mayle, Y. Axford & S. J. Brooks, 2016. Environmental controls on the distribution and diversity of lentic Chironomidae (Insecta: Diptera) across an altitudinal gradient in tropical South America. Ecology and Evolution 6: 91–112.

    Article  PubMed  Google Scholar 

  • Miranda, A., A. Altamirano, L. Cayuela, F. Pincheira & A. Lara, 2015. Different times, same story: native forest loss and landscape homogenization in three physiographical areas of south-central of Chile. Applied Geography 60: 20–28.

    Article  Google Scholar 

  • Motta, L. & J. Massaferro, 2019. Climate and site-specific factors shape chironomid taxonomic and functional diversity patterns in northern Patagonia. Hydrobiologia 839: 131–143.

    Article  Google Scholar 

  • Nicacio, G. & L. Juen, 2015. Chironomids as indicators in freshwater ecosystems: an assessment of the literature. Insect Conservation and Diversity 8: 393–403.

    Article  Google Scholar 

  • Nogaro, G. & A. D. Steinman, 2014. Influence of ecosystem engineers on ecosystem processes is mediated by lake sediment properties. Oikos 123: 500–512.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2019. vegan: Community Ecology Package. R package version 2.5-4.

  • Oliver, D. R., 1971. Life history of the chironomidae. Annual Review of Entomology 16: 211–230.

    Article  Google Scholar 

  • Philippi, R. A., 1865. Aufzählung der chilenischen Dipteren-Verhandl. Zoologisch-Botanischen Gesellschaft, Wien, XV.

    Book  Google Scholar 

  • Pizarro, J., P. M. Vergara, S. Cerda & D. Briones, 2016. Cooling and eutrophication of southern Chilean lakes. Science of the Total Environment 541: 683–691.

    Article  CAS  PubMed  Google Scholar 

  • Pizarro, J., P. M. Vergara, J. A. Rodríguez, P. A. Sanhueza & S. A. Castro, 2010. Nutrients dynamics in the main river basins of the centre-southern region of Chile. Journal of Hazardous Materials 175: 608–613.

    Article  CAS  PubMed  Google Scholar 

  • Płóciennik, M., M. Skonieczka, O. Antczak & J. Siciński, 2018. Phenology of non-biting midges (Diptera Chironomidae) in peatland ponds, Central Poland. Entomologica Fennica 29: 61–74.

    Article  Google Scholar 

  • Porinchu, D. F. & G. M. MacDonald, 2003. The use and application of freshwater midges (Chironomidae: Insecta: Diptera) in geographical research. Progress in Physical Geography 27: 378–422.

    Article  Google Scholar 

  • Quinlan, R. & J. P. Smol, 2002. Regional assessment of long-term hypolimnetic oxygen changes in Ontario (Canada) shield lakes using subfossil chironomids. Journal of Paleolimnology 27: 249–260.

    Article  Google Scholar 

  • Quinlan, R. & J. P. Smol, 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26: 327–342.

    Article  Google Scholar 

  • Quinlan, R., J. P. Smol & R. I. Hall, 1998. Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil midges (Diptera: Chironomidae). Canadian Journal of Fisheries and Aquatic Sciences 55: 587–596.

    Article  Google Scholar 

  • R-Core-Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Viena.

    Google Scholar 

  • Rees, A. B. H., L. C. Cwynar & P. S. Cranston, 2008. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. Journal of Paleolimnology 40: 1159–1178.

    Article  Google Scholar 

  • Reiss, F., 1972. Die Tanytarsini (Chironomidae, Diptera) Südchiles und Westpatagoniens. mit hinweisen auf die tanytarsini-Fauna der neotropis. Studies on Neotropical Fauna 7: 49–94.

    Article  Google Scholar 

  • Rieradevall, M. & S. J. Brooks, 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. Journal of Paleolimnology 25: 81–99.

    Article  Google Scholar 

  • Sæther, O. & P. Cranston, 2012. New World Stictocladius Edwards (Diptera: Chironomidae). Neotropical Entomology 41: 124–149.

    Article  PubMed  Google Scholar 

  • San Martín, C., C. Ramírez, H. Figueroa & N. Ojeda, 1991. Estudio sinecológico del bosque de roble-laurel-lingue del centro-sur de Chile. Bosque 12: 11–27.

    Article  Google Scholar 

  • Serra, M. N., M. L. García, N. Maidana, G. Villarosa, A. Lami & J. Massaferro, 2016. Little ice age to present paleoenvironmental reconstruction based on multiproxy analyses from Nahuel Huapi Lake (Patagonia, Argentina). Ameghiniana 53: 58–73.

    Article  Google Scholar 

  • Simčič, T., 2005. Respiratory electron transport system (ETS) activity and respiration rate in cold-stenothermal and eurythermal chironomid larvae from high mountain lakes. Archiv für Hydrobiologie 162: 399–415.

    Article  Google Scholar 

  • Simpson, G. L. & J. Oksanen, 2018. analogue: Analogue matching and Modern Analogue Technique transfer function models. (R package version 0.17-1).

  • Spies, M. & F. Reiss, 1996. Catalog and bibliography of Neotropical and Mexican Chironomidae (Insecta, Diptera). Spixiana Supplement 22: 61–119.

    Google Scholar 

  • Ter Braak, C. J. F., 1988. CANOCO - a FORTRAN program for canonical community ordination by [partial] [etrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1) Wageningen : MLV (Technical report/Ministerie van Landbouw en Visserij, Groep Landbouwwiskunde LWA-88-02) - 95. Wageningen University, 126.

  • Ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. In Begon, M., A. H. Fitter, E. D. Ford & A. Macfadyen (eds), Advances in Ecological Research, Vol. 18. Academic Press, New York: 271–317.

    Google Scholar 

  • Trivinho-Strixino, S., F. O. Roque & P. S. Cranston, 2009. Redescription of Riethia truncatocaudata (Edwards, 1931) (Diptera: Chironomidae), with description of female, pupa and larva and generic diagnosis for Riethia. Aquatic Insects 31: 247–259.

    Article  Google Scholar 

  • Urrutia, R., A. Araneda, L. Torres, F. Cruces, C. Vivero, F. Torrejón, R. Barra, N. Fagel & B. Scharf, 2010. Late Holocene environmental changes inferred from diatom, chironomid, and pollen assemblages in an Andean lake in Central Chile, Lake Laja (36°S). Hydrobiologia 648: 207–225.

    Article  CAS  Google Scholar 

  • Velle, G., K. P. Brodersen, H. J. B. Birks & E. Willassen, 2010. Midges as quantitative temperature indicator species: lessons for palaeoecology. The Holocene 20: 989–1002.

    Article  Google Scholar 

  • Velle, G., S. J. Brooks, H. J. B. Birks & E. Willassen, 2005. Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quaternary Science Reviews 24: 1429–1462.

    Article  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York.

    Book  Google Scholar 

  • Verschuren, D. & H. Eggermont, 2006. Quaternary paleoecology of aquatic Diptera in tropical and Southern Hemisphere regions, with special reference to the Chironomidae. Quaternary Science Reviews 25: 1926–1947.

    Article  Google Scholar 

  • Walker, I. R., 2007. Chironomid overview. In Scott, A. E. (ed.), Encyclopedia of Quaternary Science. Elsevier, Oxford: 360–366.

    Chapter  Google Scholar 

  • Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic-change. Canadian Journal of Fisheries and Aquatic Sciences 48: 975–987.

    Article  Google Scholar 

  • Williams, N., D. Añón Suárez, M. Rieradevall, A. Rizzo, R. Daga, M. A. Arribére & S. Ribeiro Guevara, 2019. Response of Chironomidae to environmental disturbances in a high mountain lake in Patagonia during the last millennium – Corrigendum. Quaternary Research 92: 605.

    Article  Google Scholar 

  • Williams, N., M. Rieradevall, D. A. Suárez, A. Rizzo, R. Daga, S. R. Guevara & M. A. Arribére, 2016. Chironomids as indicators of natural and human impacts in a 700-yr record from the northern Patagonian Andes. Quaternary Research 86: 120–132.

    Article  Google Scholar 

  • Williams, N., D. A. Suárez, R. Juncos, M. Donato, S. R. Guevara & A. Rizzo, 2020. Spatiotemporal structuring factors in the Chironomidae larvae (Insecta: Diptera) assemblages of an ultraoligotrophic lake from northern Patagonia Andean range: implications for paleolimnological interpretations. Hydrobiologia 847: 267–291.

    Article  CAS  Google Scholar 

  • Wu, J., D. F. Porinchu, S. P. Horn & K. A. Haberyan, 2015. The modern distribution of chironomid sub-fossils (Insecta: Diptera) in Costa Rica and the development of a regional chironomid-based temperature inference model. Hydrobiologia 742: 107–127.

    Article  CAS  Google Scholar 

  • Zhang, E., J. Chang, Y. Cao, H. Tang, P. Langdon, J. Shulmeister, R. Wang, X. Yang & J. Shen, 2017. A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China. Climate of the Past 13: 185–199.

    Article  Google Scholar 

Download references

Acknowledgments

Research funding was provided by The National Agency for Research and Development (ANID) of Chile FONDECYT 11140677 and 1190398 projects (A.M.A.). A.M.C. thanks the Doctoral scholarship programs ANID/2014 21140447 and Doctoral Thesis Completion from Universidad Austral de Chile. G.A.A. thanks the project FONDECYT 3170958. We thank Corporación Nacional Forestal (CONAF) and property owners who granted permission to access the lakes included in this study. We also thank L. Jarpa, M. Tonello, M. Cartagena, D. Osman, J. Campos, and several undergraduate students for their assistance in the fieldworks. Also, we are grateful to C. Vergara and F. Montes de Oca for their taxonomic help with the chironomid determination. Finally, we also thank J. Lopez Mendes, M. Pino, M. González, and the anonymous reviewers that helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Martel-Cea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Handling editor: Jasmine Saros.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martel-Cea, A., Astorga, G.A., Hernández, M. et al. Modern chironomids (Diptera: Chironomidae) and the environmental variables that influence their distribution in the Araucanian lakes, south-central Chile. Hydrobiologia 848, 2551–2568 (2021). https://doi.org/10.1007/s10750-021-04575-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04575-0

Keywords

Navigation