Log in

Climate and site-specific factors shape chironomid taxonomic and functional diversity patterns in northern Patagonia

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Functional richness patterns of lake chironomid assemblages have been increasingly studied in the Northern Hemisphere, but so far there are no studies in Southern Hemisphere lakes. Present-day chironomid assemblages were studied from 40 lakes in NW Patagonia to investigate functional and taxonomic diversity and its relationships with the environment. Using multiple regression analysis involving climate-related and site-specific variables, we found that water temperature and terrestrial vegetation cover were the main drivers affecting chironomid taxonomic richness and diversity. Functional richness was explained only by vegetation cover variation, and functional diversity was not explained by any of the predictor variables. Our results contrast with previous findings in the Northern Hemisphere showing that taxonomic and functional diversity measures provide similar information on community and ecosystem function. In Patagonian lakes, taxonomical diversity analysis is still more helpful to understand the relationships between chironomid assemblages and environment, which remarks the needs for further ecological studies on Chironomidae in the area. Regardless, this is the first study to investigate chironomid functional groups in relation to the environment and their distribution in austral lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, M. J., T. O. Crist, J. M. Chase, M. Vellend, B. D. Inouye, A. L. Freestone, N. J. Sanders, H. V. Cornell, L. S. Comita, K. F. Davies, S. P. Harrison, N. J. B. Kraft, J. C. Stegen & N. G. Swenson, 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14: 19–28.

    Article  PubMed  Google Scholar 

  • Árva, D., M. Tóth, A. Mozsár & A. Specziár, 2017. The roles of environment, site position, and seasonality in taxonomic and functional organization of chironomid assemblages in a heterogeneous wetland, Kis-Balaton (Hungary). Hydrobiologia 787: 353–373.

    Article  CAS  Google Scholar 

  • Berg, M. B., 1994. Larval food and feeding behaviour. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology. Chapman & Hall, London: 136–168.

    Google Scholar 

  • Birks, H. J. B., D. G. Frey & E. S. Deevey, 1998. Numerical tools in palaeolimnology-progress, potentialities, and problems. Journal of Paleolimnology 20: 307–332.

    Article  Google Scholar 

  • Brock, E. M., 1960. Mutualism between the midge Cricotopus and the alga Nostoc. Ecology 41: 474–483.

    Article  Google Scholar 

  • Brodersen, K. P. & N. J. Anderson, 2002. Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology 47: 1137–1157.

    Article  Google Scholar 

  • Brodersen, K. P., B. V. Odgaard, O. Vestergaard & N. J. Anderson, 2001. Chironomid stratigraphy in the shallow and eutrophic lake Søbygaard, Denmark: chironomid–macrophyte co-occurrence. Freshwater Biology 46: 253–267.

    Article  Google Scholar 

  • Brooks, S. J. & H. J. B. Birks, 2001. Chironomid-inferred air temperatures from Late glacial and Holocene sites in north-west Europe: progress and problems. Quaternary Science Reviews 20: 1723–1741.

    Article  Google Scholar 

  • Cabrera, L. & Y. Willink, 1973. Biogeografía de América latina. Programa regional de desarrollo científico y tecnológico, Departamento de asuntos científicos, Secretario General de la Organización de los Estados Americanos, Washington, DC.

    Google Scholar 

  • Cadotte, M. W., K. Carscadden & N. Mirotchnick, 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48: 1079–1087.

    Article  Google Scholar 

  • Carmona, C. P., F. M. Azcárate, F. de Bello, H. S. Ollero, J. Lepš & B. Peco, 2012. Taxonomical and functional diversity turnover in Mediterranean grasslands: interactions between grazing, habitat type and rainfall. Journal of Applied Ecology 49: 1084–1093.

    Article  Google Scholar 

  • Ciamporova-Zaovicova, Z., L. Hamerlík, F. Sporka & P. Bitusík, 2010. Littoral benthic macroinvertebrates of alpine lakes (Tatra Mts) along an altitudinal gradient: a basis for climate change assessment. Hydrobiologia 648: 19–34.

    Article  Google Scholar 

  • Correa-Metrio, A., Y. Dechnik, S. Lozano-García & M. Caballero, 2014. Detrended correspondence analysis: a useful tool to quantify ecological changes from fossil data sets. Boletín de la Sociedad Geológica Mexicana 66: 135–143.

    Article  Google Scholar 

  • Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling. BioScience 49: 119–127.

    Article  Google Scholar 

  • Cronin, G., W. M. Lewis & M. A. Schiehser, 2006. Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir. Aquatic Botany 85: 37–43.

    Article  Google Scholar 

  • Cummins, K. W., 1973. Trophic relations of aquatic insects. Annual Review of Entomology 18: 183–206.

    Article  Google Scholar 

  • de Mendoza, G. & J. Catalan, 2010. Lake macroinvertebrates and the altitudinal environmental gradient in the Pyrenees. Hydrobiologia 648: 51–72.

    Article  Google Scholar 

  • Devictor, V., D. Mouillot, C. Meynard, F. Jiguet, W. Thuiller & N. Mouquet, 2010. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters 13: 1030–1040.

    PubMed  Google Scholar 

  • Díaz, S. & M. Cabido, 2001. Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16: 646–655.

    Article  Google Scholar 

  • Diaz, M., F. Pedrozo, C. Reynolds & P. Temporetti, 2007. Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37: 17–27.

    Article  CAS  Google Scholar 

  • Earl, J. E. & R. D. Semlitsch, 2013. Spatial subsidies, trophic state, and community structure: examining the effects of leaf litter input on ponds. Ecosystems 16: 639–651.

    Article  Google Scholar 

  • Eggermont, H. & O. Heiri, 2012. The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biological Reviews 87: 430–456.

    Article  PubMed  Google Scholar 

  • Ferreyra, M. V., D. Grigera & C. Úbeda, 2005. Conservación de los ecosistemas de alta montaña: La zona altoandina del Parque Nacional Nahuel Huapi (Argentina). Conservation of the high mountains ecosystems: the high andean zone of Nahuel Huapi National Park (Argentina). Anales del Instituto de la Patagonia 33: 41–58.

    Google Scholar 

  • Fox, J. & S. Weisberg, 2011. An R Companion to Applied Regression, 2nd ed. Sage Publications, Thousand Oaks.

    Google Scholar 

  • Galizzi, M. C., F. Zilli & M. Marchese, 2012. Diet and functional feeding groups of Chironomidae (Diptera) in the Middle Paraná River floodplain (Argentina). Iheringia. Série Zoologia 102: 117–121.

    Article  Google Scholar 

  • Garcia, P. E., M. C. Dieguez & C. Queimaliños, 2015. Landscape integration of north patagonian mountain lakes: a first approach using characterization of dissolved organic matter. Lakes & Reservoirs: Research & Management 20: 19–32.

    Article  CAS  Google Scholar 

  • Garreaud, R., 2009. The Andes climate and weather. Advances in Geosciences 22: 3.

    Article  Google Scholar 

  • Gauch, H. G., 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Heiberger, R. M. & B. Holland, 2004. Statistical Analysis and Data Display: An Intermediate Course with Examples in S-Plus, R, and SAS. Springer, New York.

    Book  Google Scholar 

  • Heino, J., 2000. Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia 418: 229–242.

    Article  Google Scholar 

  • Heino, J., 2008. Patterns of functional biodiversity and function-environment relationships in lake littoral macroinvertebrates. Limnology and Oceanography 53: 1446–1455.

    Article  Google Scholar 

  • Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setälä, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Article  Google Scholar 

  • Jobbágy, E. G., J. M. Paruelo & R. J. C. León, 1995. Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia. Ecologia Austral 5: 47–53.

    Google Scholar 

  • Johnson, R. K. & W. Goedkoop, 2002. Littoral macroinvertebrate communities: spatial scale and ecological relationships. Freshwater Biology 47: 1840–1854.

    Article  Google Scholar 

  • Johnson, R. K., W. Goedkoop & L. Sandin, 2004. Spatial scale and ecological relationships between the macroinvertebrate communities of stony habitats of streams and lakes. Freshwater Biology 49: 1179–1194.

    Article  Google Scholar 

  • Kivilä, E. H., T. O. Luoto, M. V. Rantala, M. Kiljunen, M. Rautio & L. Nevalainen, 2019. Environmental controls on benthic food web functions and carbon resource use in subarctic lakes. Freshwater Biology 64: 643–658.

    Article  CAS  Google Scholar 

  • Langdon, P. G., N. Holmes & C. J. Caseldine, 2008. Environmental controls on modern chironomid faunas from NW Iceland and implications for reconstructing climate change. Journal of Paleolimnology 40: 273–293.

    Article  Google Scholar 

  • Lee, J. M., J. Y. Gan & C. M. Yule, 2018. The ecology of littoral zone Chironomidae in four artificial, urban, tropical Malaysian lakes. Urban Ecosystems 22: 149–159.

    Article  Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  PubMed  Google Scholar 

  • Livingstone, D. M., A. F. Lotter & I. R. Walker, 1999. The decrease in summer surface water temperature with altitude in Swiss alpine lakes: a comparison with air temperature lapse rates. Arctic, Antarctic, and Alpine Research 31: 341–352.

    Article  Google Scholar 

  • Luoto, T. P. & L. Nevalainen, 2015. Climate-forced patterns in midge feeding guilds. Hydrobiologia 742: 141–152.

    Article  Google Scholar 

  • Luoto, T. P. & A. E. Ojala, 2018. Controls of climate, catchment erosion and biological production on long-term community and functional changes of chironomids in High Arctic lakes (Svalbard). Palaeogeography, Palaeoclimatology, Palaeoecology 505: 63–72.

    Article  Google Scholar 

  • Massaferro, J. & S. J. Brooks, 2002. Response of chironomids to late quaternary environmental change in the Taitao Peninsula, Southern Chile. Journal of Quaternary Science 17: 101–111.

    Article  Google Scholar 

  • Massaferro, J. & I. Larocque-Tobler, 2013. Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina. Ecological Indicators 24: 201–210.

    Article  Google Scholar 

  • Massaferro, J., S. J. Brooks & S. G. Haberle, 2005. The dynamics of chironomid assemblages and vegetation during the Late Quaternary at Laguna Facil, Chonos Archipelago, southern Chile. Quaternary Science Reviews 24: 2510–2522.

    Article  Google Scholar 

  • Massaferro, J. I., P. I. Moreno, G. H. Denton, M. Vandergoes & A. Dieffenbacher-Krall, 2009. Chironomid and pollen evidence for climate fluctuations during the Last Glacial Termination in NW Patagonia. Quaternary Science Reviews 28: 517–525.

    Article  Google Scholar 

  • Massaferro, J., I. Larocque-Tobler, S. J. Brooks, M. Vandergoes, A. Dieffenbacher- Krall & P. Moreno, 2014. Quantifying climate change in Huelmo mire (Chile, Northwestern Patagonia) during the Last Glacial Termination using a newly developed chironomid-based temperature model. Palaeogeography, Palaeoclimatology, Palaeoecology 399: 214–224.

    Article  Google Scholar 

  • Massaferro, J., A. Correa-Metrio, F. Montes de Oca & M. Mauad, 2018. Contrasting responses of lake ecosystems to environmental disturbance: a paleoecological perspective from northern Patagonia (Argentina). Hydrobiologia 816: 79–89.

    Article  CAS  Google Scholar 

  • Mayfield, M. M., S. P. Bonser, J. W. Morgan, I. Aubin, S. McNamara & P. A. Vesk, 2010. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Global Ecology and Biogeography 19: 423–431.

    Google Scholar 

  • Miserendino, M. L. & C. I. Masi, 2010. The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecological Indicators 10: 311–319.

    Article  CAS  Google Scholar 

  • Modenutti, B. E., E. G. Balseiro, C. P. Queimaliños, D. A. Añón Suárez, M. C. Diéguez & R. J. Albariño, 1998. Structure and dynamics of food webs in Andean lakes. Lakes & Reservoirs: Research & Management 3: 179–186.

    Article  Google Scholar 

  • Montes de Oca, F., L. Motta, M. S. Plastani, C. Laprida, A. Lami & J. Massaferro, 2018. Reconstructing recent environmental changes using non-biting midges (Diptera: Chironomidae) in two high mountain lakes from northern Patagonia, Argentina. Journal of Paleolimnology 59: 175–187.

    Article  Google Scholar 

  • Motta, L., A. Ruggiero & J. Massaferro, 2017. Importance of site-specific variables other than temperature in sha** chironomid composition and distribution: implications for climate and environmental reconstructions. In PAGES, 5th Open Science Meeting Zaragoza, Spain.

  • Navarro, M. B., E. Balseiro & B. Modenutti, 2014. Bacterial community structure in Patagonian Andean lakes above and below timberline: from community composition to community function. Microbial Ecology 68: 528–541.

    Article  Google Scholar 

  • Nevalainen, L., T. P. Luoto, M. Manca & T. Weisse, 2015. A paleolimnological perspective on aquatic biodiversity in Austrian mountain lakes. Aquatic Sciences 77: 59–69.

    Article  CAS  Google Scholar 

  • New, M., D. Lister, M. Hulme & I. Makin, 2002. A high-resolution data set of surface climate over global land areas. Climate Research 21: 1–15.

    Article  Google Scholar 

  • Niswati, A., M. Yamazaki, M. Ikenaga & M. Kimura, 2002. Bacterial communities associated with aquatic organisms in the floodwater of a Japanese paddy field estimated by RFLP pattern analysis. Soil Science and Plant Nutrition 48: 185–193.

    Article  Google Scholar 

  • Nyman, M., A. Korhola & S. J. Brooks, 2005. The distribution and diversity of Chironomidae (Insecta: Diptera) in western Finnish Lapland, with special emphasis on shallow lakes. Global Ecology and Biogeography 14: 137–153.

    Article  Google Scholar 

  • Obertegger, U. & G. Flaim, 2018. Taxonomic and functional diversity of rotifers, what do they tell us about community assembly? Hydrobiologia 823: 79–91.

    Article  Google Scholar 

  • Oertli, B., D. A. Joye, E. Castella, R. Juge, D. Cambin & J. B. Lachavanne, 2002. Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104: 59–70.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, B. O´Hara, G. L. Simpson, P. Solymos, M. H. H. Henry, E. Szoecs & H. Wagner, 2017. H. vegan: Community ecology package. R package version 2.4-3. https://CRAN.R-project.org/package=vegan.

  • Pedrozo, F., S. Chillrud, P. Temporetti & M. Diaz, 1993. Chemical composition and nutrient limitation in rivers and lakes of northern Patagonian Andes (39.5°-42°S; 71°W) (Rep. Argentina). Verdhandlungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie 25: 207–214.

    CAS  Google Scholar 

  • Peña, E. A. & E. H. Slate, 2014. gvlma: global validation of linear models assumptions. R package version 1.0.0.2. https://CRAN.R-project.org/package=gvlma.

  • Péru, N. & S. Dolédec, 2010. From compositional to functional biodiversity metrics in bioassessment: a case study using stream macroinvertebrate communities. Ecological Indicators 10: 1025–1036.

    Article  CAS  Google Scholar 

  • R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Rees, A. B. H., L. C. Cwynar & P. S. Cranston, 2008. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. Journal of Paleolimnology 40: 1159–1178.

    Article  Google Scholar 

  • Robroek, B. J., V. E. J. Jassey, R. J. Payne, M. Martí, L. Bragazza, A. Bleeker, A. Buttler, S. J. M. Caporn, N. B. Dise, J. Kattge, K. Zając, B. H. Svensson, J. van Ruijven & J. T. A. Verhoeven, 2017. Taxonomic and functional turnover are decoupled in European peat bogs. Nature Communications 8: 1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogora, M., J. Massaferro, A. Marchetto, G. Tartari & R. Mosello, 2008. The water chemistry of some shallow lakes in Northern Patagonia and their nitrogen status in comparison with remote lakes in different regions of the globe. Journal of Limnology 67: 75–86.

    Article  Google Scholar 

  • Rosenfeld, J. S., 2002. Functional redundancy in ecology and conservation. Oikos 98: 156–162.

    Article  Google Scholar 

  • Schmera, D., J. Heino, J. Podani, T. Erős & S. Dolédec, 2017. Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 787: 27–44.

    Article  Google Scholar 

  • Serra, S. R., M. A. Graça, S. Dolédec & M. J. Feio, 2017. Chironomidae of the Holarctic region: a comparison of ecological and functional traits between North America and Europe. Hydrobiologia 794: 273–285.

    Article  Google Scholar 

  • Tilman, D., 2001. Functional diversity. In Levin, S. A. (ed.), Encyclopedia of Biodiversity. Academic Press, San Diego: 109–120.

    Chapter  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York.

    Book  Google Scholar 

  • Verdonschot, R. C., K. Didderen & P. F. Verdonschot, 2012. Importance of habitat structure as a determinant of the taxonomic and functional composition of lentic macroinvertebrate assemblages. Limnologica 42: 31–42.

    Article  Google Scholar 

  • Verschuren, D. & H. Eggermont, 2006. Quaternary paleoecology of aquatic Diptera in tropical and Southern Hemisphere regions, with special reference to the Chironomidae. Quaternary Science Reviews 25: 1926–1947.

    Article  Google Scholar 

  • Wallace, J. B. & R. W. Merritt, 1980. Filter-feeding ecology of aquatic insects. Annual Review of Entomology 25: 103–132.

    Article  Google Scholar 

  • Waringer, J., W. Graf & H. Malicky, 2013. Problems associated with extrapolating ecological traits to higher-than-species level exemplified in the description of the larvae of Potamophylax haidukorum (Malicky, 1999), Potamophylax winneguthi (Klapálek, 1902) and Melampophylax austriacus (Malicky, 1990). Limnologica 43: 441–450.

    Article  Google Scholar 

  • Warton, D. I., M. Lyons, J. Stoklosa & A. R. Ives, 2016. Three points to consider when choosing a LM or GLM test for count data. Methods in Ecology and Evolution 7: 882–890.

    Article  Google Scholar 

  • Woodward, C. A. & J. Shulmeister, 2006. New Zealand chironomids as proxies for human-induced and natural environmental change: Transfer functions for temperature and lake production (chlorophyll a). Journal of Paleolimnology 36: 407–429.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. We thank Melina Mauad for her collaboration in the classification of functional groups.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Motta.

Additional information

Handling editor: Marcelo S. Moretti

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motta, L., Massaferro, J. Climate and site-specific factors shape chironomid taxonomic and functional diversity patterns in northern Patagonia. Hydrobiologia 839, 131–143 (2019). https://doi.org/10.1007/s10750-019-04001-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04001-6

Keywords

Navigation