Log in

Concept Design Evaluation of Sustainable Product–Service Systems: A QFD–TOPSIS Integrated Framework with Basic Uncertain Linguistic Information

  • Published:
Group Decision and Negotiation Aims and scope Submit manuscript

A Correction to this article was published on 03 April 2024

This article has been updated

Abstract

The product–service system (PSS) is a strategic design approach proposed to address sustainability in socio-economic systems amidst rapid industrialization and transition. Evaluating the concept design of a PSS is a crucial and initial step prior to implementation. This study presents an innovative framework for evaluating concept designs of sustainable PSS based on a well-defined evaluation index system via integrating quality function deployment (QFD) and the technique for order preference by similarity to ideal solution (TOPSIS) while accommodating extended basic uncertain linguistic information (EBULI). Specifically, a QFD-based framework is first developed to identify the requirements of various stakeholders and then to establish the multi-dimensional criteria for evaluating sustainable PSS. Then, a House of Quality-based relationship matrix is introduced to determine the weights of criteria more accurately. Further, an adaptive consensus-reaching process method based on an expert weighting optimization model is proposed to ensure a collective outputs recognized by multiple involved stakeholders. Finally, an improved EBULI-based TOPSIS method is presented to determine the priority ranking of alternative sustainable PSS concepts. A case study on a car-sharing PSS project demonstrates the viability and effectiveness of the proposed QFD–TOPSIS integrated approach under EBULI settings. The alternative PSS concept design, which demonstrates relatively good performance in criteria of high importance, is selected as the most suitable option. Moreover, relevant comparative and sensitivity analyses reveal that the proposed approach exhibits superiorities in appropriate criteria elicitation, accurate weights determination, and high consensus ranking outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility Statement

The data used in this study are available from the corresponding author upon reasonable request.

Change history

References

  • Akao Y, Mazur GH (2003) The leading edge in QFD: past, present and future. Int J Qual Reliab Manag 20(1):20

    Article  Google Scholar 

  • Beliakov G, James S, Mordelová J, Rückschlossová T, Yager RR (2010) Generalized Bonferroni mean operators in multi-criteria aggregation. Fuzzy Sets Syst 161(17):2227–2242

    Article  Google Scholar 

  • Bertoni A, Larsson T (2017) Data mining in product service systems design: literature review and research questions. Procedia CIRP 64:306–311

    Article  Google Scholar 

  • Bonferroni C (1950) Sulle medie multiple di potenze. Boll dell’Unione Mat Ital 5(3–4):267–270

    Google Scholar 

  • Chang Y, Ming X, Chen Z, Zhou T, Liao X, Song W (2023) Stakeholder requirement evaluation of smart industrial service ecosystem under pythagorean fuzzy environment for complex industrial contexts: a case study of renewable energy park. Adv Eng Inform 55:101823

    Article  Google Scholar 

  • Chen D, Chu X, Sun X, Li Y (2015) A new product service system concept evaluation approach based on information axiom in a fuzzy-stochastic environment. Int J Comput Integr Manuf 28(11):1123–1141

    Google Scholar 

  • Chen D, Chu X, Yang X, Sun X, Li Y, Su Y (2015) PSS solution evaluation considering sustainability under hybrid uncertain environments. Expert Syst Appl 42(14):5822–5838

    Article  Google Scholar 

  • Chen ZS, Chin KS, Li YL, Yang Y (2016) On generalized extended Bonferroni means for decision making. IEEE Trans Fuzzy Syst 24(6):1525–1543

    Article  Google Scholar 

  • Chen ZS, Chin KS, Li YL, Yang Y (2016) Proportional hesitant fuzzy linguistic term set for multiple criteria group decision making. Inf Sci 357:61–87

    Article  Google Scholar 

  • Chen ZS, Chin KS, Tsui KL (2019) Constructing the geometric Bonferroni mean from the generalized Bonferroni mean with several extensions to linguistic 2-tuples for decision-making. Appl Soft Comput 78:595–613

    Article  Google Scholar 

  • Chen ZS, Martínez L, Chang JP, Wang XJ, **onge SH, Chin KS (2019) Sustainable building material selection: a QFD-and ELECTRE III-embedded hybrid MCGDM approach with consensus building. Eng Appl Artif Intell 85:783–807

    Article  Google Scholar 

  • Chen Z, Ming X, Wang R, Bao Y (2020) Selection of design alternatives for smart product service system: a rough-fuzzy data envelopment analysis approach. J Clean Prod 273:122931

    Article  Google Scholar 

  • Chen Z, Ming X, Zhou T, Chang Y, Sun Z (2020) A hybrid framework integrating rough-fuzzy best-worst method to identify and evaluate user activity-oriented service requirement for smart product service system. J Clean Prod 253:119954

    Article  Google Scholar 

  • Chen Z, Zhou T, Ming X, Zhang X, Miao R (2022) Configuration optimization of service solution for smart product service system under hybrid uncertain environments. Adv Eng Inform 52:101632

    Article  Google Scholar 

  • Chen ZS, Zhang X, Rodríguez RM, Pedrycz W, Martínez L, Skibniewski MJ (2022) Expertise-structure and risk-appetite-integrated two-tiered collective opinion generation framework for large scale group decision making. IEEE Trans Fuzzy Syst 30(12):5496–5510

    Article  Google Scholar 

  • Chou JR (2021) A TRIZ-based product–service design approach for develo** innovative products. Comput Ind Eng 161:107608

    Article  Google Scholar 

  • Cong J, Chen CH, Zheng P (2020) Design entropy theory: a new design methodology for smart PSS development. Adv Eng Inform 45:101124

    Article  Google Scholar 

  • de Jesus Pacheco DA, ten Caten CS, Jung CF, Sassanelli C, Terzi S (2019) Overcoming barriers towards sustainable product–service systems in small and medium-sized enterprises: state of the art and a novel decision matrix. J Clean Prod 222:903–921

    Article  Google Scholar 

  • Desa U, et al (2016) Transforming our world: the 2030 agenda for sustainable development

  • Dong Y, Wu Y, Zhang H, Zhang G (2015) Multi-granular unbalanced linguistic distribution assessments with interval symbolic proportions. Knowl Based Syst 82:139–151

    Article  Google Scholar 

  • Fargnoli M, Haber N, Sakao T (2019) PSS modularisation: a customer-driven integrated approach. Int J Prod Res 57(13):4061–4077

    Article  Google Scholar 

  • García-Zamora D, Labella Á, Ding W, Rodríguez RM, Martínez L (2022) Large-scale group decision making: a systematic review and a critical analysis. IEEE/CAA J Autom Sin 9(6):949–966

    Article  Google Scholar 

  • Geng X, Chu X, Zhang Z (2010) A new integrated design concept evaluation approach based on vague sets. Expert Syst Appl 37(9):6629–6638

    Article  Google Scholar 

  • Gou X, Xu Z, Liao H (2017) Multiple criteria decision making based on Bonferroni means with hesitant fuzzy linguistic information. Soft Comput 21(21):6515–6529

    Article  Google Scholar 

  • Herrera F, Martínez L (2000) A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst 8(6):746–752

    Article  Google Scholar 

  • ** L, Mesiar R, Borkotokey S, Kalina M (2018) Certainty aggregation and the certainty fuzzy measures. Int J Intell Syst 33(4):759–770

    Article  Google Scholar 

  • ** LS, Xu YQ, Chen ZS, Mesiar R, Yager RR (2022) Relative basic uncertain information in preference and uncertain involved information fusion. Int J Comput Intell Syst 15(1):1–7

    Article  Google Scholar 

  • Junior AEB, de Toledo JC, González MOA (2020) Systematized methods for the development of product–service systems: a systematic literature review. Prod Manag Dev 18(1):3–18

    Article  Google Scholar 

  • Kagawa S, Tasaki T, Moriguchi Y (2006) The environmental and economic consequences of product lifetime extension: empirical analysis for automobile use. Ecol Econ 58(1):108–118

    Article  Google Scholar 

  • Kimita K, Sakao T, Shimomura Y (2018) A failure analysis method for designing highly reliable product–service systems. Res Eng Des 29(2):143–160

    Article  Google Scholar 

  • Kjaer LL, Pigosso DC, McAloone TC, Birkved M (2018) Guidelines for evaluating the environmental performance of product/service-systems through life cycle assessment. J Clean Prod 190:666–678

    Article  Google Scholar 

  • Labella A, Rodríguez RM, Martínez L (2020) Computing with comparative linguistic expressions and symbolic translation for decision making: ELICIT information. IEEE Trans Fuzzy Syst 28(10):2510–2522

    Article  Google Scholar 

  • Li X, Wang Z, Chen CH, Zheng P (2021) A data-driven reversible framework for achieving sustainable smart product–service systems. J Clean Prod 279:123618

    Article  Google Scholar 

  • Lindahl M, Sundin E, Sakao T (2014) Environmental and economic benefits of integrated product service offerings quantified with real business cases. J Clean Prod 64:288–296

    Article  Google Scholar 

  • Liu P, Zhang K, Wang P, Wang F (2022) A clustering-and maximum consensus-based model for social network large-scale group decision making with linguistic distribution. Inf Sci 602:269–297

    Article  Google Scholar 

  • Lu Y, Xu Y, Huang J, Wei J, Herrera-Viedma E (2022) Social network clustering and consensus-based distrust behaviors management for large-scale group decision-making with incomplete hesitant fuzzy preference relations. Appl Soft Comput 117:108373

    Article  Google Scholar 

  • Luiten H, Knot M, van der Horst T (2001) Sustainable product–service-systems: the Kathalys method. In: Proceedings second international symposium on environmentally conscious design and inverse manufacturing. IEEE, pp 190–197

  • Martin M, Heiska M, Björklund A (2021) Environmental assessment of a product–service system for renting electric-powered tools. J Clean Prod 281:125245

    Article  Google Scholar 

  • Martinez V, Bastl M, Kingston J, Evans S (2010) Challenges in transforming manufacturing organisations into product–service providers. J Manuf Technol Manag 21(4):449

    Article  Google Scholar 

  • Mesiar R, Borkotokey S, ** L, Kalina M (2018) Aggregation under uncertainty. IEEE Trans Fuzzy Syst 26(4):2475–2478

    Article  Google Scholar 

  • Neramballi A, Sakao T, Willskytt S, Tillman AM (2020) A design navigator to guide the transition towards environmentally benign product/service systems based on LCA results. J Clean Prod 277:124074

    Article  Google Scholar 

  • Pan JN, Nguyen HTN (2015) Achieving customer satisfaction through product–service systems. Eur J Oper Res 247(1):179–190

    Article  Google Scholar 

  • Pang J, Liang J, Song P (2017) An adaptive consensus method for multi-attribute group decision making under uncertain linguistic environment. Appl Soft Comput 58:339–353

    Article  Google Scholar 

  • Qu M, Yu S, Chen D, Chu J, Tian B (2016) State-of-the-art of design, evaluation, and operation methodologies in product service systems. Comput Ind 77:1–14

    Article  Google Scholar 

  • Reda H, Dvivedi A (2022) Decision-making on the selection of lean tools using fuzzy QFD and FMEA approach in the manufacturing industry. Expert Syst Appl 192:116416

    Article  Google Scholar 

  • Rodríguez RM, Martínez L, Herrera F (2011) Hesitant fuzzy linguistic term sets for decision making. IEEE Trans Fuzzy Syst 20(1):109–119

    Article  Google Scholar 

  • Rodríguez RM, Labella Á, De Tré G, Martínez L (2018) A large scale consensus reaching process managing group hesitation. Knowl Based Syst 159:86–97

    Article  Google Scholar 

  • Sousa-Zomer TT, Miguel PAC (2017) A QFD-based approach to support sustainable product–service systems conceptual design. Int J Adv Manuf Technol 88(1):701–717

    Article  Google Scholar 

  • Tan X, Zhu J, Cabrerizo FJ, Herrera-Viedma E (2021) A cyclic dynamic trust-based consensus model for large-scale group decision making with probabilistic linguistic information. Appl Soft Comput 100:106937

    Article  Google Scholar 

  • Tao Z, Shao Z, Liu J, Zhou L, Chen H (2020) Basic uncertain information soft set and its application to multi-criteria group decision making. Eng Appl Artif Intell 95:103871

    Article  Google Scholar 

  • Tran TA, Park JY (2014) Development of integrated design methodology for various types of product–service systems. J Comput Des Eng 1(1):37–47

    Google Scholar 

  • Tseng ML, Wu KJ, Chiu AS, Lim MK, Tan K (2018) Service innovation in sustainable product service systems: improving performance under linguistic preferences. Int J Prod Econ 203:414–425

    Article  Google Scholar 

  • Vezzoli C, Ceschin F, Diehl JC, Kohtala C (2015) New design challenges to widely implement ‘sustainable product–service systems’. J Clean Prod 97:1–12

    Article  Google Scholar 

  • Wang Z, Rodríguez RM, Wang YM, Martínez L (2021) A two-stage minimum adjustment consensus model for large scale decision making based on reliability modeled by two-dimension 2-tuple linguistic information. Comput Ind Eng 151:106973

    Article  Google Scholar 

  • Wu X, Liao H (2021) Customer-oriented product and service design by a novel quality function deployment framework with complex linguistic evaluations. Inf Process Manag 58(2):102469

    Article  Google Scholar 

  • Wu C, Chen T, Li Z, Liu W (2021) A function-oriented optimising approach for smart product service systems at the conceptual design stage: a perspective from the digital twin framework. J Clean Prod 297:126597

    Article  Google Scholar 

  • Wu J, Zhao Z, Sun Q, Fujita H (2021) A maximum self-esteem degree based feedback mechanism for group consensus reaching with the distributed linguistic trust propagation in social network. Inf Fusion 67:80–93

    Article  Google Scholar 

  • **a M, Xu Z, Zhu B (2013) Geometric Bonferroni means with their application in multi-criteria decision making. Knowl Based Syst 40:88–100

    Article  Google Scholar 

  • Yager RR (2004) On the retranslation process in Zadeh’s paradigm of computing with words. IEEE Trans Syst Man Cybern Part B (Cybernetics) 34(2):1184–1195

    Article  Google Scholar 

  • Yang X, Moore P, Pu JS, Wong CB (2009) A practical methodology for realizing product service systems for consumer products. Comput Ind Eng 56(1):224–235

    Article  Google Scholar 

  • Yang Q, Chen ZS, Chan CY, Pedrycz W, Martínez L, Skibniewski MJ (2022) Large-scale group decision-making for prioritizing engineering characteristics in quality function deployment under comparative linguistic environment. Appl Soft Comput 127:109359

    Article  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-I. Inf Sci 8(3):199–249

    Article  Google Scholar 

  • Zhang X, Ming X (2022) Comprehensive understanding of smart product service system from multi-dimension and multi-perspective: an innovative service model for customer–product interaction life cycle (CILC). Adv Eng Inform 52:101619

    Article  Google Scholar 

  • Zhang G, Dong Y, Xu Y (2014) Consistency and consensus measures for linguistic preference relations based on distribution assessments. Inf Fusion 17:46–55

    Article  Google Scholar 

  • Zhang X, Li J, Eres H, Zheng C (2021) Prioritizing and aggregating interacting requirements for product–service system development. Expert Syst Appl 185:115636

    Article  Google Scholar 

  • Zhang X, Su J, Herrera-Viedma E (2022) A decision support model for estimating participation-oriented designs of crowdsourcing platforms based on quality function deployment. Expert Syst Appl 202:117308

    Article  Google Scholar 

  • Zheng P, Lin TJ, Chen CH, Xu X (2018) A systematic design approach for service innovation of smart product–service systems. J Clean Prod 201:657–667

    Article  Google Scholar 

  • Zheng P, Wang Z, Chen CH, Khoo LP (2019) A survey of smart product–service systems: key aspects, challenges and future perspectives. Adv Eng Inform 42:100973

    Article  Google Scholar 

  • Zhou T, Chen Z, Cao Y, Miao R, Ming X (2022) An integrated framework of user experience-oriented smart service requirement analysis for smart product service system development. Adv Eng Inform 51:101458

    Article  Google Scholar 

  • Zhou T, Chen Z, Ming X (2022) Multi-criteria evaluation of smart product–service design concept under hesitant fuzzy linguistic environment: a novel cloud envelopment analysis approach. Eng Appl Artif Intell 115:105228

    Article  Google Scholar 

  • Zhou T, Ming X, Han T, Bao Y, Liao X, Tong Q, Liu S, Guan H, Chen Z (2023) Smart experience-oriented customer requirement analysis for smart product service system: a novel hesitant fuzzy linguistic cloud dematel method. Adv Eng Inform 56:101917

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant nos. 72301047 and 72171182), the Natural Science Foundation of Chongqing, China (grant no. 2022NSCQ-MSX2158), Key Project of Humanities and Social Sciences Research Base of Chongqing Municipal Education Commission (grant No. 22SKJD087), Science and Technology Planning Project of Chongqing Municipal Education Commission (grant no.KJQN20210070), Chongqing Social Science Planning Project (grant no. 2021NDQN49), and the Scientific Research Startup Project of Chongqing Jiaotong University (grant no. 21JDKJC-A020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Song Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics Approval

Not applicable.

Consent to Publish

Not applicable.

Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article has been revised due to funding statement update.

Appendix

Appendix

Proofs of serveral Theorems and properties

Proof of Theorem 1

Based on the defined basic operational laws (1) and (3), we have \(p\left( {{{{\widetilde{b}}}_i}} \right) = \left\langle {{g^{ - 1}}\left( {1 - {{(1 - {\alpha _i})}^p}} \right) ;{c_i}} \right\rangle \) and

\(p\left( {{{{\widetilde{b}}}_i}} \right) \oplus p\left( {{{\widetilde{b}}_j}} \right) = \left\langle {{g^{ - 1}}\left( {1 - {{(1 - {\alpha _i})}^p}} \right) ;{c_i}} \right\rangle \oplus \left\langle {{g^{ - 1}}\left( {1 - {{(1 - {\alpha _j})}^p}} \right) ;{c_j}} \right\rangle = \left\langle {{g^{ - 1}}\left( {1 - {{(1 - {\alpha _i})}^p}{{(1 - {\alpha _j})}^q}} \right) ;\frac{1}{2}\left( {{c_i} + {c_j}} \right) } \right\rangle \).

Then,

\({\prod\limits_{{{\begin{array}{c} \scriptstyle i,j = 1\\ \scriptstyle i \ne j \end{array}}}}^n {\left( {p({{{\widetilde{b}}}_i}) \oplus q({{\widetilde{b}}_j})} \right) } ^{\frac{1}{{n(n - 1)}}}} = \left\langle {{g^{ - 1}}\left( {\prod \limits _{\begin{array}{c} \scriptstyle i,j = 1\\ \scriptstyle i \ne j \end{array}}^n {{{\left( {1 - {{(1 - {\alpha _i})}^p}{{(1 - {\alpha _j})}^q}} \right) }^{\frac{1}{{n(n - 1)}}}}} } \right) ;\frac{1}{n}\sum \limits _{i = 1}^n {{c_i}} } \right\rangle \).

Therefore,

\(\mathsf{{EBULIGBM}}{^{p,q}}\left( {{{{\tilde{b}}}_1},{{{\tilde{b}}}_2}, \cdots ,{{{\tilde{b}}}_n}} \right) = \frac{1}{{p + q}}\left( {{{\prod \limits _{\begin{array}{c} \scriptstyle i,j = 1\\ \scriptstyle i \ne j \end{array}}^n {\left( {p({{{\widetilde{b}}}_i}) \oplus q({{{\widetilde{b}}}_j})} \right) } }^{\frac{1}{{n(n - 1)}}}}} \right) \) \(= \left\langle {{g^{- 1}} \left( 1 - \left( {1 - \left( {\prod \limits _{{\begin{array}{c} \scriptstyle i,j = 1\\ \scriptstyle i \ne j \end{array}}}^1 {{{(1 - {{(1 - {\alpha _i})}^p}{{(1 - {\alpha _j})}^q})}^{\frac{1}{{n(n - 1)}}}}} } \right) } \right) ^{\frac{1}{{p + q}}} \right) ;\frac{1}{n}\sum \limits _{i = 1}^n {{c_i}} } \right\rangle \)

The proof is completed.

\(\square \)

Proof of Property 1

As \({{\widetilde{b}}_i} = {\widetilde{b}}\) for all \(i = 1,2, \ldots ,n\), then we have \(\mathsf{{EBULIGBM}}{^{p,q}}\left( {\widetilde{{b_1}},{{{\widetilde{b}}}_2}, \cdots ,{{{\widetilde{b}}}_n}} \right) = {\mathsf{{EBULIGBM}}^{p,q}}\left( {{\widetilde{b}},{\widetilde{b}}, \cdots ,{\widetilde{b}}} \right) \).

Furtherly, based on the Definition 7, we have \(\mathsf{{EBULIGBM}}{^{p,q}}\left( {\widetilde{{b_1}},{{\widetilde{b}}_2}, \cdots ,{{{\widetilde{b}}}_n}} \right) = \frac{1}{{p + q}} {\prod \limits _{{\begin{array}{c} \scriptstyle i,j = 1\\ \scriptstyle i \ne j \end{array}}}^n {\left( {p({{{\widetilde{b}}}_i}) \oplus q({{{\widetilde{b}}}_j})} \right) } ^{\frac{1}{{n(n - 1)}}}} = \frac{1}{{p +q}}{\left( {(p + q)({\widetilde{b}})} \right) ^{\frac{{n(n - 1)}}{{n(n - 1)}}}} = {\widetilde{b}}\)

Thus, \({\mathsf{{EBULIGBM}}^{p,q}}\left( {{\widetilde{b}},{\widetilde{b}}, \cdots ,{\widetilde{b}}} \right) = \mathsf{{EBULIGBM}}{^{p,q}}\left( {\widetilde{{b_1}},{{{\widetilde{b}}}_2}, \cdots ,{{{\widetilde{b}}}_n}} \right) = {\widetilde{b}}\)

The proof is completed.

Proof of Property 2

Based on the Theorem 1, we have

\(\begin{array}{l} \mathsf{{EBULIGBM}}{^{p,q}}\left( {{\tilde{b}}_1^1,\tilde{b}_2^1, \cdots ,{\tilde{b}}_n^1} \right) = \frac{1}{{p + q}}{\prod \limits _{\begin{array}{c} \scriptstyle i,j = 1\\ \scriptstyle i \ne j \end{array}}^n {\left( {p({\widetilde{b}}_i^1) \oplus q({\widetilde{b}}_j^1)} \right) } ^{\frac{1}{{n(n - 1)}}}}\\ \mathrm{{ }} = \left\langle {{g^{ - 1}}\left( {1 - {{\left( {1 - \left( {\prod \limits _{{\begin{array}{c} \scriptstyle i,j = 1\\ \scriptstyle i \ne j \end{array}}}^n {{{(1 - {{(1 - \alpha _i^1)}^p}{{(1 - \alpha _j^1)}^q})}^{\frac{1}{{n(n - 1)}}}}} } \right) } \right) }^{\frac{1}{{p + q}}}}} \right) ;\frac{1}{n}\sum \limits _{i = 1}^n {c_i^1} } \right\rangle \end{array}\) and

\(\begin{array}{l} {\mathsf{{EBULIGBM}}^{p,q}}\left( {{\tilde{b}}_1^2,\tilde{b}_2^2, \cdots ,{\tilde{b}}_n^2} \right) = \frac{1}{{p + q}}{\prod \limits _{\begin{array}{c} \scriptstyle i,j = 1\\ \scriptstyle i \ne j \end{array}}}^n {\left( {p({\tilde{b}}_i^2) \oplus q({\tilde{b}}_j^2)} \right) } ^{\frac{1}{{n(n - 1)}}}= \left\langle {{g^{ - 1}}\left( {1 - {{\left( {1 - \left( {\prod \limits _{\begin{array}{c} \scriptstyle i,j = 1\\ \scriptstyle i \ne j \end{array}}}^n {{{(1 - {{(1 - \alpha _i^2)}^p}{{(1 - \alpha _j^2)}^q})}^{\frac{n}{{n(n - 1)}}}}} \right) } \right) }^{\frac{1}{{p + q}}}}} \right) ;\frac{1}{n}\sum \limits _{i = 1}^n {c_i^2} } \right\rangle \end{array}\).

Since \({\widetilde{b}}_i^1 \le {\widetilde{b}}_i^2\) for all \(i = 1,2, \ldots ,n\), and \({\tilde{b}}_i^1 \le {\tilde{b}}_i^2 \Leftrightarrow \left( {\alpha _i^1c_i^1 \le \alpha _i^2c_i^2} \right) \vee \left( {(\alpha _i^1c_i^1 = \alpha _i^2c_i^2) \wedge (\alpha _i^1 \le \alpha _i^2)} \right) \).

Therefore, \({\mathsf{{EBULIGBM}}^{p,q}}\left( {{\tilde{b}}_1^1,\tilde{b}_2^1, \cdots ,{\tilde{b}}_n^1} \right) \le {\mathsf{{EBULIGBM}}^{p,q}}\left( {{\tilde{b}}_1^2,{\tilde{b}}_2^2, \cdots ,{\tilde{b}}_n^2} \right) \)

The proof is completed. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Chen, ZS., Zhu, JH. et al. Concept Design Evaluation of Sustainable Product–Service Systems: A QFD–TOPSIS Integrated Framework with Basic Uncertain Linguistic Information. Group Decis Negot 33, 469–511 (2024). https://doi.org/10.1007/s10726-023-09870-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10726-023-09870-w

Keywords

Navigation