Log in

Evaluation of genetic diversity and population structure in elite south Indian tea [Camellia sinensis (L.) Kuntze] using RAPD and ISSR markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Tea [Camellia sinensis (L.) Kuntze] has primarily been improved by selections and controlled hybridizations. In India, the genetic improvement programs are largely led by United Planters Association of South India (UPASI). Tea has robust vegetative propagation and several high yielding commercial elite tea clones released by UPASI have been cultivated across the world. In a previous study, we analysed 42 elite UPASI tea clones using cytological and molecular analysis (Sharma and Raina, Int J Tea Sci 5:21–28, 2006). Present work analysed the same clones using Random amplified polymorphic DNA (RAPD) and Inter simple sequence repeat (ISSR) markers to document the genetic diversity and delineate the genetically distinct superior tea clones. A total of 447 and 116 bands were generated with 52 RAPD and 27 ISSR primers, out of which 395 and 70 bands, respectively were observed to be polymorphic. RAPD markers outcompeted ISSRs when compared against various genetic diversity attributes. An overall low Nei’s gene diversity (0.23 and 0.19) and higher value of gene flow (6.5 and 5.0) with both markers indicated narrow genetic base for the clones. Dendrograms delineated 42 clones into three major clusters whereas population STRUCTURE analysis clustered them into 6 subpopulations without discrete morphotype based grou**. Presence of many admixtures in STRUCTURE indicates towards diverse genetic ancestry of the analysed tea clones. A high level of genetic variation (90.48%) was revealed with analysis of molecular variance (AMOVA) within populations as compared to a low (9.52%) level among populations. A few superior clones were found to be genetically distinct than others and can be fruitfully used in future tea breeding programme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JA, Churchill JE, Autrique SD et al (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–188

    Article  CAS  PubMed  Google Scholar 

  • Balasaravanan T, Pius PK, Rajkumar R, Muraleedharan N, Shasany AK (2003) Genetic diversity among south Indian tea germplasm (Camellia sinensis, C. assamica and C. assamica spp. Lasiocalyx) using AFLP markers. Plant Sci 165:365–372

    Article  CAS  Google Scholar 

  • Banerjee B (1992) Botanical classification of tea. In: Wilson K, Clifford N (eds) Tea: cultivation to consumption: Chapman and Hall, London

  • Barua PK (1965) Classification of tea plants: species hybrids. Two and a Bud 12:13–27

    Google Scholar 

  • Charles HBJ (1981) Seed to civilization: the story of food. Freeman, San Francisco

    Google Scholar 

  • Chen L, Yamaguchi S (2002) Genetic diversity and phylogeny of tea plant (Camellia sinensis) and its related species and varieties in the section Thea genus Camellia determined by randomly amplified polymorphic DNA analysis. J Hortic Sci Biotechnol 77:729–732

    Article  CAS  Google Scholar 

  • Chen L, Yang YJ, Yu FL, Gao QK, Chen DM (1998) A study on genetic diversity of 15 tea cultivars (Camellia sinensis (L.) O.Kuntze) using RAPD markers. J Tea Science 18:21–27

    Google Scholar 

  • Chowdhury MA, Vandenberg B, Warkentin T (2002) Cultivar identification and genetic relationship among selected breeding lines and cultivars in chickpea (Cicer arietinum L.). Euphytica 127:317–325

    Article  CAS  Google Scholar 

  • Ellis RT (1995) Tea. In: Smart J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific and Technical, Harlow, Essex, UK, pp 22–27

  • Eltaher S, Sallam A, Belamkar V, Emara HA, Nower AA, Salem KFM et al (2018) Genetic diversity and population structure of F3:6 nebraska winter wheat genotypes using genoty**-by-sequencing. Front Genet 9:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farajpour M, Ebrahimi M, Amiri R et al (2011) Study of genetic variation in yarrow using inter-simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) markers. Afr J Biotechnol 10(54):11137–11141

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenetic: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511808999

    Book  Google Scholar 

  • Gonzalez A, Coulson M, Brettell R (2000) Development of DNA markers (ISSRs) in mango. Acta Hortic 575:139–143

    Google Scholar 

  • Gorji AM, Poczai P, Polgar Z et al (2011) Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am J Potato Res 88(3):226–237

    Article  Google Scholar 

  • Goulao L, Oliveira CM (2001) Molecular characterization of cultivars of apple (Malus domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica 122:81–89

    Article  CAS  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) Clumpp: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Kapteyn J, Goldsbrough P, Simon J (2002) Genetic relationships and diversity of commercially relevant Echinacea species. Theor Appl Genet 105:369–376

    Article  CAS  PubMed  Google Scholar 

  • Karthiguyan A, Thangavelu M, Udaiyan K (2005) Response of tea (Camellia sinensis (L). Kuntze) to arbuscular mycorrhizal fungi under plantation nursery conditions. Bio Agri Horticult 22(4):305–319

  • Kaundun SS, Zhyvoloup A, Park Y (2000) Evaluation of genetic diversity among elite tea (Camellia sinensis var. sinensis) accessions using RAPD markers. Euphytica 115:7–16

    Article  CAS  Google Scholar 

  • Khurana-Kaul V, Kachhwaha S, Kothari SL (2012) Characterization of genetic diversity in Jatropha curcas L. germplasm using RAPD and ISSR markers. Indian J Biotechnol 11(1):54–61

  • Ward FK (1950) Does wild tea exist? Nature 165:297–299

    Article  Google Scholar 

  • Kiruthiga D, Damodaran K (2017) Economics of tea cultivation in the Nilgiris district. EPRA Int J Agri Rural Econ Res 4:16–21

    Google Scholar 

  • Liu BH (1998) Statistical genomics: linkage, map** and QTL analysis. CRC Press, Boca Raton

    Google Scholar 

  • Lewontin RC (1972) Apportionment of human diversity. J Evol Bio 6:381–398

    Google Scholar 

  • Lin ZH, Chen RH, Chen CS (2007) Preliminary application of ISSR markers in the genetic relationship analysis of tea plants. J Tea Sci 27:45–50

    CAS  Google Scholar 

  • Mahar KS, Rana TS, Ranade SA, Meena B (2011) Genetic variability and population structure in Sapindus emarginatus Vahl from India. Gene 485(1):32–39

    Article  CAS  PubMed  Google Scholar 

  • Meegahakumbura MK, Wambulwa MC, Thapa KK, Li MM, Möller M, Xu JC et al (2016) Indications for three independent domestication events for the tea plant (Camellia sinensis (L.) O. Kuntze) and new insights into the origin of tea germplasm in China and India revealed by nuclear microsatellites. PLoS ONE 11:1–14

    Article  Google Scholar 

  • Moghaieb REA, Abdelhadi AA, El-Sadaw HA et al (2017) Molecular identification and genetic diversity among Photorhabdus and Xenorhabdus isolates. 3 Biotech 7:6

  • Mondal TK (2002) Assessment of genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) by inter simple sequence repeat polymerase chain reaction. Euphytica 128:307–315

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci, USA 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohsako T, Ohgushi T, Motosugi H, Oka K (2008) Microsatellite variability within and among local landrace population of tea, Camellia sinensis (L.) O. Kuntze, in Kyoto, Japan, Genet Resour Crop Evol 55:1047–1053

    Article  Google Scholar 

  • Ostrowski MF, David J, Santoni S, Mc Khann H, Reboud X, Corre VL, Camilleri C, Brunel D, Bouchez D, Faure B et al (2006) Evidence for a large –scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Mol Ecol 15:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Patel DM, Fougat RS, Sakure AA et al (2016) Detection of genetic variation in sandalwood using various DNA markers. 3 Biotech 6:1–11

  • Peng J, Zhao Y, Dong M, Liu S, Hu Z, Zhong X, Xu Z (2021) Exploring the evolutionary characteristics between cultivated tea and its wild relatives using complete chloroplast genomes. BMC Ecol Evol 21(1):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul S, Wachira FN, Powell W, Waugh R (1997) Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L)O. Kuntze) revealed by AFLP markers. Theor Appl Genet 94:255–263

    Article  CAS  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato accessions. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina SN, Ahuja PS, Sharma RK, Das SC, Bhardwaj P et al (2011) Genetic structure and diversity of Indian hybrid tea. Genet Resour Crop Evol 59:1527–1541

    Article  Google Scholar 

  • Rohlf FJ (2000) NTSYSpc: Numerical taxonomy and naditivariate analysis system. Version 2.1 Exeter software Applied Biestatistics Inc. New York USA

  • Roberts EAH, Wight W, Wood DJ (1958) paper chromatography as an aid to the identification of Thea camellias. New Phytol 57:211–225

    Article  CAS  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The Neighbour –joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–426

    CAS  PubMed  Google Scholar 

  • Sealy JR (1958) A revision of the genus Camellia. Royal Hort. Soc, London

    Google Scholar 

  • Sehgal D, Raina SN (2005) Genoty** safflower (Carthamus tinctorius) cultivars by DNA fingerprints. Euphytica 146:67–76

    Article  CAS  Google Scholar 

  • Sharma S, Raina SN (2006) Chromosome constitution os some Indian tea clones. Int J Tea Sci 5:21–28

    CAS  Google Scholar 

  • Sharma RK, Negi MS, Sharma S, Bhardwaj P, Kumar R et al (2009) AFLP based genetic diversity assessment of commercially important tea germplasmin India. Biochem Genet 48:549–564

    Article  Google Scholar 

  • Sharma S, Chaudhary M, Singh VP, Raina SN (2015) Chloroplast and mitochondrial DNA assay in solving issues related to taxonomy of beveragial tea clones. Proc Natl Acad Sci India Sec B Biol Sci 85:1039–1053

    Article  CAS  Google Scholar 

  • Sharma S, Kaushik S, Raina SN (2019) Estimation of nuclear DNA content and its variation among Indian tea accessions by flow cytometry. Physiol Mol Biol Plants 25:339–346

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Reddy SK, Jawali N (2012) Genetic diversity analyses of Mungbean (Vigna radiata [L]. Wilczek) by ISSR. Int J Plant Breed 6(2):73–83

  • Singh ID (1979) Indian tea germplasm and its contribution to the world’s tea industry. Two and Bud 26:23–26

    Google Scholar 

  • Sue PL, Grant B, Bernard R, Baum, (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report 15:8–15

    Article  Google Scholar 

  • Velasco-Ramirez AP, Torres-Moran MI, Molina-Moret S et al (2014) Efficiency of RAPD, ISSR, AFLP and ISTR markers for the detection of polymorphisms and genetic relationships in camote de cerro (Dioscorea spp.). Electron J Biotechnol 17:65–71

    Article  Google Scholar 

  • Verma KS, Shamshad ul Haq, Kachhwaha S, Kothari SL (2017) RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) schrad: a unique source of germplasm highly adapted to drought and high temperature stress. 3 Biotech 7:2–24

  • Wachira FN, Waugh R, Hackett CA, Powell W (1995) Detection of genetic diversity in tea (Camellia sinensis) using, RAPD markers. Genome 38:201–210

    Article  CAS  PubMed  Google Scholar 

  • Wachira FN, Powell W, Waugh R (1997) Assessment of genetic diversity among Camellia sinensis L. (cultivated tea) and its wild relatives based on randomly amplified polymorphic DNA and organelle specific STS. Heredity 78:603–611

    Article  CAS  Google Scholar 

  • Wachira FN, Tanaka J, Takeda Y (2001) Genetic variation and differentiation in tea (Camellia sinensis) germplasm revealed by RAPD and AFLP variation. J Hortic Sci Biotechnol 76:557–563

    CAS  Google Scholar 

  • Wang X, Feng H, Chang Y, Ma C, Wang L, Hao X, Li A, Cheng H, Wang L, Cui P, ** J, Wang X, Wei K, Ai C, Zhao S, Wu Z, Li Y, Liu B, Wang GD, Chen L, Ruan J, Yang Y (2020) Population sequencing enhances understanding of tea plant evolution. Nat Commun 1(1):4447

    Article  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • **a EH, Zhang HB et al (2017) The tea tree genome provide insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant 10:866–877

  • Yao MZ, Chen L, Wang XC (2007) Genetic diversity and relationship of clonal tea cultivar in China revealed by ISSR markers. Acta Argon Sin 33:598–604

    CAS  Google Scholar 

  • Yao MZ, Chen L, Liang YR (2008) Genetic diversity among tea cultivars from China, Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding programmes. Plant Breed 127:166–172

    Article  CAS  Google Scholar 

  • Young-Goo P, Kaundun SS, Zhyvoloup A (2002) Use of bulked genomic DNA based RAPD methodology to access the genetic diversity among the abandoned Korean tea plantations. Genet Resour Crop Evol 49:159–165

Download references

Acknowledgements

Authors are thankful to United Planters Association of South India (UPASI), Valparai, India for providing tea germplasm. The financial support from University Grant Commission (UGC) and Department of Biotechnology Government of India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Sharma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Kumar, A., Rajpal, V.R. et al. Evaluation of genetic diversity and population structure in elite south Indian tea [Camellia sinensis (L.) Kuntze] using RAPD and ISSR markers. Genet Resour Crop Evol 70, 381–398 (2023). https://doi.org/10.1007/s10722-022-01433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-022-01433-3

Keywords

Navigation