Log in

Cosmological constant and Szekeres–Szafron metric

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The present paper is devoted to analyzing light deflection caused by the presence of a cosmological constant in a space-time described by the Szekeres–Szafron metric. We use the orbital equation for light to calculate the deflection angle in gravitational lensing in the equatorial plane of the Szekeres–Szafron metric. The present study confirms that the cosmological constant has an effect on gravitational lensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The experimental data that support the findings of this study are available in [68] with the identifier [“https://doi.org/10.48550/ar**v.0710.4726”].

References

  1. Astier, P., Guy, J., Regnault, N., Pain, R., Aubourg, E., Balam, D., Basa, S., Carlberg, R., Fabbro, S., Fouchez, D., et al.: The supernova legacy survey: measurement of, and w from the first year data set. Astron. Astrophys. 447(1), 31–48 (2006)

    Article  ADS  Google Scholar 

  2. Riess, A.G., Strolger, L.-G., Tonry, J., Casertano, S., Ferguson, H.C., Mobasher, B., Challis, P., Filippenko, A.V., Jha, S., Li, W., et al.: Type Ia supernova discoveries at \(z> 1\) from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607(2), 665 (2004)

    Article  ADS  MATH  Google Scholar 

  3. Wood-Vasey, W.M., Miknaitis, G., Stubbs, C., Jha, S., Riess, A., Garnavich, P.M., Kirshner, R.P., Aguilera, C., Becker, A.C., Blackman, J., et al.: Observational constraints on the nature of dark energy: first cosmological results from the essence supernova survey. Astrophys. J. 666(2), 694 (2007)

    Article  ADS  Google Scholar 

  4. Davis, T.M., Mörtsell, E., Sollerman, J., Becker, A.C., Blondin, S., Challis, P., Clocchiatti, A., Filippenko, A., Foley, R., Garnavich, P.M., et al.: Scrutinizing exotic cosmological models using essence supernova data combined with other cosmological probes. Astrophys. J. 666(2), 716 (2007)

    Article  ADS  Google Scholar 

  5. Kowalski, M., Rubin, D., Aldering, G., Agostinho, R., Amadon, A., Amanullah, R., Balland, C., Barbary, K., Blanc, G., Challis, P., et al.: Improved cosmological constraints from new, old, and combined supernova data sets. Astrophys. J. 686(2), 749 (2008)

    Article  ADS  Google Scholar 

  6. Riess, A.G., Strolger, L.-G., Casertano, S., Ferguson, H.C., Mobasher, B., Gold, B., Challis, P.J., Filippenko, A.V., Jha, S., Li, W., et al.: New hubble space telescope discoveries of type Ia supernovae at \(z\ge 1\): narrowing constraints on the early behavior of dark energy. Astrophys. J. 659(1), 98 (2007)

    Article  ADS  Google Scholar 

  7. Spergel, D., et al.: (wmap collaboration) astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  8. Hinshaw, G., Nolta, M., Bennett, C., Bean, R., Doré, O., Greason, M., Halpern, M., Hill, R., Jarosik, N., Kogut, A., et al.: Three-year wilkinson microwave anisotropy probe (wmap*) observations: temperature analysis. Astrophys. J. Suppl. Ser. 170(2), 288 (2007)

    Article  ADS  Google Scholar 

  9. Komatsu, E., Dunkley, J., Nolta, M., Bennett, C., Gold, B., Hinshaw, G., Jarosik, N., Larson, D., Limon, M., Page, L., et al.: Five-year wilkinson microwave anisotropy probe* observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 180(2), 330 (2009)

    Article  ADS  Google Scholar 

  10. Dunkley, J., Komatsu, E., Nolta, M., Spergel, D., Larson, D., Hinshaw, G., Page, L., Bennett, C., Gold, B., Jarosik, N., et al.: Five-year wilkinson microwave anisotropy probe* observations: likelihoods and parameters from the wmap data. Astrophys. J. Suppl. Ser. 180(2), 306 (2009)

    Article  ADS  Google Scholar 

  11. Eisenstein, D.J., Zehavi, I., Hogg, D.W., Scoccimarro, R., Blanton, M.R., Nichol, R.C., Scranton, R., Seo, H.-J., Tegmark, M., Zheng, Z., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633(2), 560 (2005)

    Article  ADS  Google Scholar 

  12. Percival, W.J., Cole, S., Eisenstein, D.J., Nichol, R.C., Peacock, J.A., Pope, A.C., Szalay, A.S.: Measuring the baryon acoustic oscillation scale using the sloan digital sky survey and 2dF galaxy redshift survey. Mon. Not. R. Astron. Soc. 381(3), 1053–66 (2007)

    Article  ADS  Google Scholar 

  13. Percival, W.J., Reid, B.A., Eisenstein, D.J., Bahcall, N.A., Budavari, T., Frieman, J.A., Fukugita, M., Gunn, J.E., Ivezić, Ž, Knapp, G.R., et al.: Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon. Not. R. Astron. Soc. 401(4), 2148–2168 (2010)

    Article  ADS  Google Scholar 

  14. Fujii, Y.: Origin of the gravitational constant and particle masses in a scale-invariant scalar-tensor theory. Phys. Rev. D 26(10), 2580 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ford, L.H.: Cosmological-constant dam** by unstable scalar fields. Phys. Rev. D 35(8), 2339 (1987)

    Article  ADS  Google Scholar 

  16. Wetterich, C.: Cosmologies with variable newton’s “constant’’. Nucl. Phys. B 302(4), 645–667 (1988)

    Article  ADS  Google Scholar 

  17. Ratra, B., Peebles, P.J.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37(12), 3406 (1988)

    Article  ADS  Google Scholar 

  18. Chiba, T., Sugiyama, N., Nakamura, T.: Cosmology with x-matter. Mon. Not. R. Astron. Soc. 289(2), L5–L9 (1997)

    Article  ADS  Google Scholar 

  19. Ferreira, P.G., Joyce, M.: Structure formation with a self-tuning scalar field. Phys. Rev. Lett. 79(24), 4740 (1997)

    Article  ADS  Google Scholar 

  20. Ferreira, P.G., Joyce, M.: Cosmology with a primordial scaling field. Phys. Rev. D 58(2), 023503 (1998)

    Article  ADS  Google Scholar 

  21. Copeland, E.J., Liddle, A.R., Wands, D.: Exponential potentials and cosmological scaling solutions. Phys. Rev. D 57(8), 4686 (1998)

    Article  ADS  Google Scholar 

  22. Caldwell, R.R., Dave, R., Steinhardt, P.J.: Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 80(8), 1582 (1998)

    Article  ADS  MATH  Google Scholar 

  23. Zlatev, I., Wang, L., Steinhardt, P.J.: Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82(5), 896 (1999)

    Article  ADS  Google Scholar 

  24. Steinhardt, P.J., Wang, L., Zlatev, I.: Cosmological tracking solutions. Phys. Rev. D 59(12), 123504 (1999)

    Article  ADS  Google Scholar 

  25. Chiba, T., Okabe, T., Yamaguchi, M.: Kinetically driven quintessence. Phys. Rev. D 62(2), 023511 (2000)

    Article  ADS  Google Scholar 

  26. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85(21), 4438 (2000)

    Article  ADS  Google Scholar 

  27. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Essentials of k-essence. Phys. Rev. D 63(10), 103510 (2001)

    Article  ADS  Google Scholar 

  28. Kamenshchik, A., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511(2–4), 265–268 (2001)

    Article  ADS  MATH  Google Scholar 

  29. Bento, M., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66(4), 043507 (2002)

    Article  ADS  Google Scholar 

  30. Dvali, G., Gabadadze, G., Porrati, M.: 4d gravity on a brane in 5d Minkowski space. Phys. Lett. B 485(1–3), 208–214 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Capozziello, S.: Curvature quintessence. Int. J. Mod. Phys. D 11(04), 483–491 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Capozziello, S., Carloni, S., Troisi, A.: Quintessence without scalar fields, ar**v preprintar**v:astro-ph/0303041v1 (2003)

  33. Capozziello, S., Cardone, V.F., Carloni, S., Troisi, A.: Curvature quintessence matched with observational data. Int. J. Mod. Phys. D 12(10), 1969–1982 (2003)

    Article  ADS  Google Scholar 

  34. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70(4), 043528 (2004)

    Article  ADS  Google Scholar 

  35. Nojiri, S., Odintsov, S.D.: Modified gravity with negative and positive powers of curvature: unification of inflation and cosmic acceleration. Phys. Rev. D 68(12), 123512 (2003)

    Article  ADS  Google Scholar 

  36. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy: dark energy with w<- 1 causes a cosmic doomsday. Phys. Rev. Lett. 91(7), 071301 (2003)

    Article  ADS  Google Scholar 

  37. Islam, J.: The cosmological constant and classical tests of general relativity. Phys. Lett. A 97(6), 239–241 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  38. Rindler, W., Ishak, M.: Contribution of the cosmological constant to the relativistic bending of light revisited. Phys. Rev. D 76(4), 043006 (2007)

    Article  ADS  Google Scholar 

  39. Sereno, M.: Influence of the cosmological constant on gravitational lensing in small systems. Phys. Rev. D 77(4), 043004 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  40. Heydari-Fard, M., Mojahed, S., Rokni, S.: Light bending in Reissner–Nordstrom–de Sitter black hole by Rindler–Ishak method. Astrophys. Space Sci. 351(1), 251–253 (2014)

    Article  ADS  Google Scholar 

  41. Sultana, J.: Contribution of the cosmological constant to the bending of light in Kerr–de Sitter spacetime. Phys. Rev. D 88(4), 042003 (2013)

    Article  ADS  Google Scholar 

  42. Kraniotis, G.: Precise analytic treatment of Kerr and Kerr-(anti) de sitter black holes as gravitational lenses. Class. Quantum Gravity 28(8), 085021 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Kraniotis, G.: Frame dragging and bending of light in Kerr and Kerr-(anti) de sitter spacetimes. Class. Quantum Gravity 22(21), 4391 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Kraniotis, G.: Gravitational lensing and frame dragging of light in the Kerr–Newman and the Kerr–Newman (anti) de sitter black hole spacetimes. Gen. Relativ. Gravit. 46(11), 1–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mojahedi, M.: Weak gravitational lensing of Dilaton-de Sitter black holes. Gen. Relativ. Gravit. 49(11), 1–12 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ellis, G.F., Maartens, R., MacCallum, M.A.: Relativistic Cosmology. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  47. Trodden, M., Carroll, S.M.: Introduction to cosmology. In: Particle Physics and Cosmology: The Quest for Physics Beyond the Standard Model (s)(TASI 2002), pp. 703–793. World Scientific (2004)

  48. Collaboration, E.H.T. et al.: First m87 event horizon telescope results. I. The shadow of the supermassive black hole, ar**v preprintar**v:1906.11238 (2019)

  49. Akiyama, K., Alberdi, A., Alef, W., Asada, K., Azulay, R., Baczko, A.-K., Ball, D., Baloković, M., Barrett, J., Bintley, D., et al.: First m87 event horizon telescope results. V. Physical origin of the asymmetric ring. Astrophys. J. Lett. 875(1), L5 (2019)

    Article  ADS  Google Scholar 

  50. Scientific, L.: “Virgo collaborations,’’ observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  51. Piattella, O.F.: On the effect of the cosmological expansion on the gravitational lensing by a point mass. Universe 2(4), 25 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  52. Aghili, M.E., Bolen, B., Bombelli, L.: Effect of accelerated global expansion on the bending of light. Gen. Relativ. Gravit. 49, 1–14 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Park, M.: Rigorous approach to gravitational lensing. Phys. Rev. D 78(2), 023014 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  54. Lemaître, G.: L’univers en expansion. Ann. Soc. Sci. Brux. 53, 51 (1933)

    MATH  Google Scholar 

  55. Tolman, R.C.: Effect of inhomogeneity on cosmological models. Proc. Natl. Acad. Sci. 20(3), 169–176 (1934)

    Article  ADS  MATH  Google Scholar 

  56. Hellaby, C., Lake, K.: The redshift structure of the big bang in inhomogeneous cosmological models. I-spherical dust solutions. Astrophys J 282, 1–10 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  57. Hellaby, C., Lake, K.: Shell crossings and the Tolman model. Astrophys. J. 290, 381–387 (1985)

    Article  ADS  Google Scholar 

  58. Stavrinos, P., Kouretsis, A., Stathakopoulos, M.: Friedman-like Robertson–Walker model in generalized metric space-time with weak anisotropy. Gen. Relativ. Gravit. 40, 1403–1425 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Clarkson, C.A., Barrett, R.K.: Does the isotropy of the CMB imply a homogeneous universe? some generalized EGS theorems. Class. Quantum Gravity 16(12), 3781 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Lim, W.C., van Elst, H., Uggla, C., Wainwright, J.: Asymptotic isotropization in inhomogeneous cosmology. Phys. Rev. D 69(10), 103507 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Szekeres, P.: Quasispherical gravitational collapse. Phys. Rev. D 12(10), 2941 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  62. Collins, C., Szafron, D.: A new approach to inhomogeneous cosmologies: Intrinsic symmetries. I. J. Math. Phys. 20(11), 2347–2353 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  63. Szafron, D., Collins, C.: A new approach to inhomogeneous cosmologies: intrinsic symmetries. II. Conformally flat slices and an invariant classification. J. Math. Phys. 20(11), 2354–2361 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  64. Collins, C., Szafron, D.: A new approach to inhomogeneous cosmologies: Intrinsic symmetries. III. Conformally flat slices and their analysis. J. Math. Phys. 20(11), 2362–2370 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  65. Szafron, D.: Inhomogeneous cosmologies: new exact solutions and their evolution. J. Math. Phys. 18(8), 1673–1677 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Ferrando, J.J., Sáez, J.A.: Intrinsic, deductive, explicit, and algorithmic characterization of the Szekeres–Szafron solutions. Phys. Rev. D 97(4), 044026 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  67. Bordbar, M.R., Aghababaei, L.: A geometrical justification for spiral galaxies rotation curves. Astrophys. Space Sci. 365, 1–4 (2020)

    Article  MathSciNet  Google Scholar 

  68. Ishak, M., Rindler, W., Dossett, J., Moldenhauer, J., Allison, C.: A new independent limit on the cosmological constant/dark energy from the relativistic bending of light by galaxies and clusters of galaxies. Mon. Not. R. Astron. Soc. 388(3), 1279–1283 (2008)

    ADS  Google Scholar 

  69. Palmese, A., Devicente, J., Pereira, M., Annis, J., Hartley, W., Herner, K., Soares-Santos, M., Crocce, M., Huterer, D., Hernandez, I.M., et al.: A statistical standard siren measurement of the Hubble constant from the LIGO/Virgo gravitational wave compact object merger GW190814 and Dark Energy Survey galaxies. Astrophys. J. Lett. 900(2), L33 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MA wrote the main manuscript text and MRB prepared the main idea about Szekers–Szafron metric and some calculations.

Corresponding author

Correspondence to Mojtaba Amirmojahedi.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordbar, M.R., Amirmojahedi, M. Cosmological constant and Szekeres–Szafron metric. Gen Relativ Gravit 55, 78 (2023). https://doi.org/10.1007/s10714-023-03121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03121-8

Keywords

Navigation