Log in

3D Anisotropic P- and S-Mode Wavefields Separation in 3D Elastic Reverse-Time Migration

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

In 2D anisotropic media, non-stationary filters and low-rank approximation methods are classical strategies to compute the decomposition operators, but they suffer from expensive computational costs for 3D media. This study adopts the eigenform analysis into 3D vertical transverse isotropic (VTI) media and produces the separated vector P and S wavefields with the same amplitudes, phases, and physical units as the input elastic wavefields. We first built a 3D zero-order pseudo-Helmholtz decomposition operator by deriving the eigenvalues and eigenvectors of the 3D VTI wave equations in the wavenumber domain. The eigenvalues refer to the phase velocities of P-, SH-, and SV-wave, and the corresponding eigenvectors are pointing to their polarizations. Second, we use the pseudo-Helmholtz decomposition operator to construct a 3D anisotropic Poisson’s equation. Based on the laterally homogeneous assumption, Poisson’s equation is solved in the mixed domain \(z - k_{x} - k_{y}\), where \(k_{x}\), \(k_{y}\), and \(z\) denote the horizontal wavenumbers and depth, respectively. Third, we obtain the vector P and S wavefields using the proposed 3D pseudo-Helmholtz decomposition operator in the space domain. Lastly, 3D PP and PS images are calculated with a dot-product imaging condition. The anisotropic amplitude versus offset (AVO) responses of the 3D elastic reverse-time migration (ERTM) images are also validated by analytical solutions (Ruger’s equations). Our proposed 3D pseudo-Helmholtz decomposition operator degrades to a gradient operator satisfying isotropic media conditions. In addition, the method is easy to extend into 3D due to its high-efficiency cost. Several numerical examples with large shear anisotropy are selected to demonstrate the feasibility of our proposed pseudo-Helmholtz decomposition method in 3D applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

Download references

Acknowledgments

We appreciate the help of the Editor and the anonymous reviewers for their comments and suggestions. These significantly improve the quality of this paper. This study is jointly supported by the National Key R&D Program of China (2017YFC1500303), the Science Foundation of China University of Petroleum, Bei**g (2462019YJRC007 and 2462020YXZZ047), and the Strategic Cooperation Technology Projects of CNPC and CUPB (ZX20190220, and Sinopec Joint Key Project (U19B6003-004), and NSFC National Natural Science Foundation of China (42104108), China Postdoctoral Science Foundation (2021M703576).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Jiahui Zuo developed the theory and validated them with numerical computations, and wrote a preliminary manuscript. Dr. Yang Zhao improved the theory, numerical simulations and provided English language editing issues as the corresponding author. The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors approved the final version of the review paper.

Corresponding author

Correspondence to Yang Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Assuming the eigenvalue of the matrix \({\text{A}}\) is \(\lambda\) with the corresponding eigenvector (\(x_{1} ,x_{2} ,x_{3}\)), so we have

$$ \begin{gathered} \left( {c_{11} k_{x}^{2} + c_{66} k_{y}^{2} + c_{44} k_{z}^{2} } \right)x_{1} + \left( {c_{11} - c_{66} } \right)k_{x} k_{y} x_{2} + \left( {c_{13} + c_{44} } \right)k_{x} k_{z} x_{3} = \lambda x_{1} , \hfill \\ \left( {c_{11} - c_{66} } \right)k_{x} k_{y} x_{1} + \left( {c_{66} k_{x}^{2} + c_{11} k_{y}^{2} + c_{44} k_{z}^{2} } \right)x_{2} + \left( {c_{13} + c_{44} } \right)k_{y} k_{z} x_{3} = \lambda x_{2} , \hfill \\ \left( {c_{13} + c_{44} } \right)k_{x} k_{z} x_{1} + \left( {c_{13} + c_{44} } \right)k_{y} k_{z} x_{2} + \left( {c_{44} k_{x}^{2} + c_{44} k_{y}^{2} + c_{33} k_{z}^{2} } \right)x_{3} = \lambda x_{3} . \hfill \\ \end{gathered} $$
(A1)

For the first equation of (A1), if set \(x_{3} = 1\), we obtain

$$ x_{1} = \frac{{\left( {c_{13} + c_{44} } \right)k_{x} k_{z} + \left( {c_{11} - c_{66} } \right)k_{x} k_{y} x_{2} }}{{\lambda_{3} - \left( {c_{11} k_{x}^{2} + c_{66} k_{y}^{2} + c_{44} k_{z}^{2} } \right)}}. $$
(A2)

Then inserting Eq. (A2) into the second equation of (A1), we obtain

$$ x_{2} = \frac{{\left( {c_{13} + c_{44} } \right)\left( {c_{11} - c_{66} } \right)k_{x}^{2} k_{y} k_{z} + \left[ {\lambda_{3} - \left( {c_{11} k_{x}^{2} + c_{66} k_{y}^{2} + c_{44} k_{z}^{2} } \right)} \right]\left( {c_{13} + c_{44} } \right)k_{z} k_{y} }}{{\left[ {\lambda_{3} - \left( {c_{11} k_{x}^{2} + c_{66} k_{y}^{2} + c_{44} k_{z}^{2} } \right)} \right]\left[ {\lambda_{3} - \left( {c_{66} k_{x}^{2} + c_{11} k_{y}^{2} + c_{44} k_{z}^{2} } \right)} \right] - \left( {c_{11} - c_{66} } \right)^{2} k_{x}^{2} k_{y}^{2} }}. $$
(A3)

Finally, substituting the knowing eigenvalue \(\lambda_{3}\) into Eqs. (A2) and (A3), we have the eigenvector \(\hat{a}_{3}\).

If set \(x_{2} = 1\), we obtain

$$ x_{1} = \frac{{\left( {c_{11} - c_{66} } \right)k_{x} k_{y} + \left( {c_{13} + c_{44} } \right)k_{x} k_{z} x_{3} }}{{\lambda_{2} - \left( {c_{11} k_{x}^{2} + c_{66} k_{y}^{2} + c_{44} k_{z}^{2} } \right)}}. $$
(A4)

Then inserting Eq. (A4) into the third equation of (A1), we obtain

$$ x_{3} = \frac{{\left( {c_{13} + c_{44} } \right)\left( {c_{11} - c_{66} } \right)k_{x}^{2} k_{y} k_{z} + \left[ {\lambda_{2} - \left( {c_{11} k_{x}^{2} + c_{66} k_{y}^{2} + c_{44} k_{z}^{2} } \right)} \right]\left( {c_{13} + c_{44} } \right)k_{z} k_{y} }}{{\left[ {\lambda_{2} - \left( {c_{11} k_{x}^{2} + c_{66} k_{y}^{2} + c_{44} k_{z}^{2} } \right)} \right]\left[ {\lambda_{2} - \left( {c_{44} k_{x}^{2} + c_{44} k_{y}^{2} + c_{33} k_{z}^{2} } \right)} \right] - \left( {c_{13} + c_{44} } \right)^{2} k_{x}^{2} k_{z}^{2} }}. $$
(A5)

After substituting \(\lambda_{2}\) into Eqs. (A4) and (A5), we have the eigenvector \({\hat{\text{a}}}_{2}\).

If set \(x_{1} = 1\) for the second part equation of (A1), we obtain

$$ x_{2} = \frac{{\left( {c_{11} - c_{66} } \right)k_{x} k_{y} + \left( {c_{13} + c_{44} } \right)k_{y} k_{z} x_{3} }}{{\lambda_{1} - \left( {c_{66} k_{x}^{2} + c_{11} k_{y}^{2} + c_{44} k_{z}^{2} } \right)}}. $$
(A6)

And inserting Eq. (A6) into the third part of Eq. (A1), we obtain

$$ x_{3} = \frac{{\left( {c_{13} + c_{44} } \right)\left( {c_{11} - c_{66} } \right)k_{x} k_{y}^{2} k_{z} + \left[ {\lambda_{1} - \left( {c_{66} k_{x}^{2} + c_{11} k_{y}^{2} + c_{44} k_{z}^{2} } \right)} \right]\left( {c_{13} + c_{44} } \right)k_{x} k_{z} }}{{\left[ {\lambda_{1} - \left( {c_{66} k_{x}^{2} + c_{11} k_{y}^{2} + c_{44} k_{z}^{2} } \right)} \right]\left[ {\lambda_{1} - \left( {c_{44} k_{x}^{2} + c_{44} k_{y}^{2} + c_{33} k_{z}^{2} } \right)} \right] - \left( {c_{13} + c_{44} } \right)^{2} k_{y}^{2} k_{z}^{2} }}. $$
(A7)

In the same way, we have the eigenvector \({\hat{\text{a}}}_{1}\) with \(\lambda_{1}\).

The eigenvalues \(\lambda_{1}\), \(\lambda_{2}\), and \(\lambda_{3}\) of Eq. (A1) is determined by \(\left| {\lambda E - {\text{A}}} \right| = 0\) being rewritten as

$$ \left| {\begin{array}{*{20}c} {\lambda - c_{11} k_{x}^{2} - c_{66} k_{y}^{2} - c_{44} k_{z}^{2} } & { - \left( {c_{11} - c_{66} } \right)k_{x} k_{y} } & { - \left( {c_{13} + c_{44} } \right)k_{x} k_{z} } \\ { - \left( {c_{11} - c_{66} } \right)k_{x} k_{y} } & {\lambda - c_{66} k_{x}^{2} - c_{11} k_{y}^{2} - c_{44} k_{z}^{2} } & { - \left( {c_{13} + c_{44} } \right)k_{y} k_{z} } \\ { - \left( {c_{13} + c_{44} } \right)k_{x} k_{z} } & { - \left( {c_{13} + c_{44} } \right)k_{y} k_{z} } & {\lambda - c_{44} k_{x}^{2} - c_{44} k_{y}^{2} - c_{33} k_{z}^{2} } \\ \end{array} } \right| = 0. $$
(A8)

Solving Eq. (A8), then the eigenvalues are

$$ \begin{aligned} \lambda_{2} = & c_{66} k_{x}^{2} + c_{66} k_{y}^{2} + c_{44} k_{z}^{2} , \\ \lambda_{1,3} = & \frac{{\left( {c_{44} + c_{11} } \right)k_{x}^{2} + \left( {c_{44} + c_{11} } \right)k_{y}^{2} + \left( {c_{33} + c_{44} } \right)k_{z}^{2} }}{2} \pm \frac{{\left( {c_{11} - c_{44} } \right)k_{x}^{2} + \left( {c_{11} - c_{44} } \right)k_{y}^{2} + \left( {c_{33} - c_{44} } \right)k_{z}^{2} }}{2}, \\ \times \sqrt {1 + \frac{{4\left( {c_{44} c_{11} - c_{11} c_{33} + c_{33} c_{44} + c_{13}^{2} + 2c_{13} c_{44} } \right)\left( {k_{x}^{2} + k_{y}^{2} } \right)k_{z}^{2} }}{{\left[ {\left( {c_{11} - c_{44} } \right)k_{x}^{2} + \left( {c_{11} - c_{44} } \right)k_{y}^{2} + \left( {c_{33} - c_{44} } \right)k_{z}^{2} } \right]^{2} }}} \\ \end{aligned} $$
(A9)

Replacing the stiffness coefficients with the Thomsen parameters, Eq. (A9) can be simplified as

$$ \begin{aligned} \lambda_{2} = & \rho v_{s}^{2} \left[ {\left( {1 + 2\gamma } \right)k_{x}^{2} + \left( {1 + 2\gamma } \right)k_{y}^{2} + k_{z}^{2} } \right], \\ \lambda_{1,3} = & \frac{{\left[ {\left( {1 + 2\varepsilon } \right)v_{p}^{2} + v_{s}^{2} } \right]k_{x}^{2} + \left[ {\left( {1 + 2\varepsilon } \right)v_{p}^{2} + v_{s}^{2} } \right]k_{y}^{2} + \left( {v_{p}^{2} + v_{s}^{2} } \right)k_{z}^{2} }}{2}, \\ \pm \rho \frac{{\left[ {\left( {1 + 2\varepsilon } \right)v_{p}^{2} - v_{s}^{2} } \right]k_{x}^{2} + \left[ {\left( {1 + 2\varepsilon } \right)v_{p}^{2} - v_{s}^{2} } \right]k_{y}^{2} + \left( {v_{p}^{2} - v_{s}^{2} } \right)k_{z}^{2} }}{2}, \\ \times \sqrt {1 - \frac{{8\left( {\varepsilon - \delta } \right)v_{p}^{2} \left( {v_{p}^{2} - v_{s}^{2} } \right)\left( {k_{x}^{2} + k_{y}^{2} } \right)k_{z}^{2} }}{{\left[ {\left( {\left( {1 + 2\varepsilon } \right)v_{p}^{2} - v_{s}^{2} } \right)k_{x}^{2} + \left( {\left( {1 + 2\varepsilon } \right)v_{p}^{2} - v_{s}^{2} } \right)k_{y}^{2} + \left( {v_{p}^{2} - v_{s}^{2} } \right)k_{z}^{2} } \right]^{2} }}} \\ \end{aligned} $$
(A10)

Based on the weak anisotropy hypothesis, we approximate the square-root term using the first-order Taylor expansion. Eq. (A10) can be simplified as Eq. (4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, J., Niu, F., Liu, L. et al. 3D Anisotropic P- and S-Mode Wavefields Separation in 3D Elastic Reverse-Time Migration. Surv Geophys 43, 673–701 (2022). https://doi.org/10.1007/s10712-021-09688-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-021-09688-8

Keywords

Navigation