Log in

Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Viruses have long been considered to be the most promising tools for human gene therapy. However, the initial enthusiasm for the use of viruses has been tarnished in the light of potentially fatal side effects. Transposons have a long history of use with bacteria in the laboratory and are now routinely applied to eukaryotic model organisms. Transposons show promise for applications in human genetic modification and should prove a useful addition to the gene therapy tool kit. Here we review the use of viruses and the limitations of current approaches to gene therapy, followed by a more detailed analysis of transposon length and the physical properties of internal sequences, which both affect transposition efficiency. As transposon length increases, transposition decreases: this phenomenon is known as length-dependence, and has implications for vector cargo capacity. Disruption of internal sequences, either via deletion of native DNA or insertion of exogenous DNA, may reduce or enhance genetic mobility. These effects may be related to host factor binding, essential spacer requirements or other influences yet to be elucidated. Length-dependence is a complex phenomenon driven not simply by the distance between the transposon ends, but by host proteins, the transposase and the properties of the DNA sequences encoded within the transposon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams C, McCarthy HO, Coulter JA, Worthington J, Murphy C, Robson T, Hirst DG (2009) Nitric oxide synthase gene therapy enhances the toxicity of cisplatin in cancer cells. J Gene Med 11:160–168

    Article  CAS  PubMed  Google Scholar 

  • Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L, Scaramuzza S, Andolfi G, Mirolo M, Brigida I, Tabucchi A, Carlucci F, Eibl M, Aker M, Slavin S, Al-Mousa H, Al Ghonaium A, Ferster A, Duppenthaler A, Notarangelo L, Wintergerst U, Buckley RH, Bregni M, Marktel S, Valsecchi MG, Rossi P, Ciceri F, Miniero R, Bordignon C, Roncarolo MG (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360:447–458

    Article  CAS  PubMed  Google Scholar 

  • Alba R, Bosch A, Chillon M (2005) Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther 12:S18–S27

    Article  CAS  PubMed  Google Scholar 

  • Auge-Gouillou C, Hamelin MH, Demattei MV, Periquet M, Bigot Y (2001) The wild-type conformation of the Mos-1 inverted terminal repeats is suboptimal for transposition in bacteria. Mol Genet Genomics 265:51–57

    Article  CAS  PubMed  Google Scholar 

  • Balciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A, Sivasubbu S, Wang X, Hackett PB, Largaespada DA, McIvor RS, Ekker SC (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. Plos Genetics 2:1715–1724

    Article  CAS  Google Scholar 

  • Bigot Y, Brillet B, Auge-Gouillou C (2005) Conservation of palindromic and mirror motifs within inverted terminal repeats of mariner-like elements. J Mol Biol 351:108–116

    Article  CAS  PubMed  Google Scholar 

  • Bischerour J, Chalmers R (2007) Base-flip** dynamics in a DNA hairpin processing reaction. Nucleic Acids Res 35:2584–2595

    Article  CAS  PubMed  Google Scholar 

  • Bischerour J, Chalmers R (2009) Base flip** in Tn10 transposition: an active flip and capture mechanism. PLoS One 4:e6201

    Article  PubMed  CAS  Google Scholar 

  • Bischerour J, Lu C, Roth DB, Chalmers R (2009) Base flip** in V(D)J recombination: insights into the mechanism of hairpin formation, the 12/23 rule, and the coordination of double-strand breaks. Mol Cell Biol 29:5889–5899

    Article  CAS  PubMed  Google Scholar 

  • Brillet B, Bigot Y, Auge-Gouillou C (2007) Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains. Genetica 130:105–120

    Article  PubMed  CAS  Google Scholar 

  • Buisine N, Tang CM, Chalmers R (2002) Transposon-like Correia elements: structure, distribution and genetic exchange between pathogenic Neisseria sp. FEBS Lett 522:52–58

    Article  CAS  PubMed  Google Scholar 

  • Buning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M (2008) Recent developments in adeno-associated virus vector technology. J Gene Med 10:717–733

    Article  PubMed  CAS  Google Scholar 

  • Bushman FD (2007) Retroviral integration and human gene therapy. J Clin Invest 117:2083–2086

    Article  CAS  PubMed  Google Scholar 

  • Cavazzana-Calvo M, Hacein-Bey S, Basile CD, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Le Deist F, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672

    Article  CAS  PubMed  Google Scholar 

  • Chalberg TW, Portlock JL, Olivares EC, Thyagarajan B, Kirby PJ, Hillman RT, Hoelters J, Calos MP (2006) Integration specificity of phage phi C31 integrase in the human genome. J Mol Biol 357:28–48

    Article  CAS  PubMed  Google Scholar 

  • Chalmers R, Guhathakurta A, Benjamin H, Kleckner N (1998) IHF modulation of Tn10 transposition: sensory transduction of supercoiling status via a proposed protein/DNA molecular spring. Cell 93:897–908

    Article  CAS  PubMed  Google Scholar 

  • Chalmers R, Sewitz S, Lipkow K, Crellin P (2000) Complete nucleotide sequence of Tn10. J Bacteriol 182:2970–2972

    Article  CAS  PubMed  Google Scholar 

  • Chandler M, Clerget M, Galas DJ (1982) The transposition frequency of IS1-flanked transposons is a function of their size. J Mol Biol 154:229–243

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Starlinger P (1995) The role of subterminal sites of transposable element ds of zea-mays in excision. Mol Gen Genet 249:281–288

    Article  CAS  PubMed  Google Scholar 

  • Claeys Bouuaert C, Chalmers R (2009) Transposition of the human Hsmar1 transposon: rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage. Nucleic Acids Res Epub ahead of print, doi:10.1093/nar/gkp891

  • Claeys Bouuaert C, Chalmers R (2010) Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons. Genetica Epub ahead of print, doi: 10.1007/s10709-009-9391-x

  • Conese M, Giola SD, Castellani S (2008) Gene therapy for cystic fibrosis. Expert Opin Ther Pat 18:929–943

    Article  CAS  Google Scholar 

  • Copeland KM, Agrawal V, Rahim A, White CL, Porter C, Harris PA, Kelly M, Harrington KJ (2007) 15th Annual Congress of the European-Society-of-Gene-and-Cell-Therapy. Rotterdam, The Netherlands, p 1000

    Google Scholar 

  • Cordaux R, Udit S, Batzer MA, Feschotte C (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci U S A 103:8101–8106

    Article  CAS  PubMed  Google Scholar 

  • Crellin P, Chalmers R (2001) Protein-DNA contacts and conformational changes in the Tn10 transpososome during assembly and activation for cleavage. EMBO J 20:3882–3891

    Article  CAS  PubMed  Google Scholar 

  • Crellin P, Sewitz S, Chalmers R (2004) DNA loo** and catalysis; the IHF-folded arm of Tn10 promotes conformational changes and hairpin resolution. Mol Cell 13:537–547

    Article  CAS  PubMed  Google Scholar 

  • Delihas N (2008) Small mobile sequences in bacteria display diverse structure/function motifs. Mol Microbiol 67:475–481

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Wu XH, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac resource (PB) transposon in mammalian cells and mice. Cell 122:473–483

    Article  CAS  PubMed  Google Scholar 

  • Edelstein ML, Abedi MR, Wixon J, Edelstein RM (2004) Gene therapy clinical trials worldwide 1989–2004—an overview. J Gene Med 6:597–602

    Article  PubMed  Google Scholar 

  • Edelstein ML, Abedi MR, Wixon J (2007a) Gene therapy clinical trials worldwide to 2007—an update. J Gene Med 9:833–842

    Article  PubMed  Google Scholar 

  • Edelstein ML, Abedi MR, Wixon J (2007b) Gene therapy clinical trials worldwide to 2007—an update. J Gene Med 9:833–842

    Article  PubMed  Google Scholar 

  • Ehrhardt A, Engler JA, Xu H, Cherry AM, Kay MA (2006) Molecular analysis of chromosomal rearrangements in mammalian cells after phi C31-mediated integration. Hum Gene Ther 17:1077–1094

    Article  CAS  PubMed  Google Scholar 

  • Ehrhardt A, Yant SR, Giering JC, Xu H, Engler JA, Kay MA (2007) Somatic integration from an adenoviral hybrid vector into a hot spot in mouse liver results in persistent transgene expression levels in vivo. Mol Ther 15:146–156

    Article  CAS  PubMed  Google Scholar 

  • Essner JJ, McIvor RS, Hackett PB (2005) Awakening gene therapy with slee** beauty transposons. Curr Opin Pharmacol 5:513–519

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Fischer SEJ, van Luenen H, Plasterk RHA (1999) Cis requirements for transposition of Tc1-like transposons in C. elegans. Mol Gen Genet 262:268–274

    CAS  PubMed  Google Scholar 

  • Flotte TR (2007) Gene therapy: the first two decades and the current state-of-the-art. J Cell Physiol 213:301–305

    Article  CAS  PubMed  Google Scholar 

  • Gao GP, Yang YP, Wilson JM (1996) Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy. J Virol 70:8934–8943

    CAS  PubMed  Google Scholar 

  • Geurts AM, Yang Y, Clark KJ, Liu GY, Cui ZB, Dupuy AJ, Bell JB, Largaespada DA, Hackett PB (2003) Gene transfer into genomes of human cells by the slee** beauty transposon system. Mol Ther 8:108–117

    Article  CAS  PubMed  Google Scholar 

  • Goncalves MA, Holkers M, van Nierop GP, Wieringa R, Pau MG, de Vries AA (2008) Targeted chromosomal insertion of large DNA into the human genome by a fiber-modified high-capacity adenovirus-based vector system. PLoS ONE 3:e3084

    Article  PubMed  CAS  Google Scholar 

  • Gorman C, Bullock C (2000) Site-specific gene targeting for gene expression in eukaryotes. Curr Opin Biotechnol 11:455–460

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Till R, Smith MC (2007) Sequences in attB that affect the ability of phiC31 integrase to synapse and to activate DNA cleavage. Nucleic Acids Res 35:3407–3419

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K, Asnafi V, MacIntyre E, Dal Cortivo L, Radford I, Brousse N, Sigaux F, Moshous D, Hauer J, Borkhardt A, Belohradsky BH, Wintergerst U, Velez MC, Leiva L, Sorensen R, Wulffraat N, Blanche S, Bushman FD, Fischer A, Cavazzana-Calvo M (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142

    Article  CAS  PubMed  Google Scholar 

  • Hackett PB (2007) Integrating DNA vectors for gene therapy. Mol Ther 15:10–12

    Article  CAS  PubMed  Google Scholar 

  • Hartl DL, Lohe AR, Lozovskaya ER (1997) Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu Rev Genet 31:337–358

    Article  CAS  PubMed  Google Scholar 

  • Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci U S A 79:3398–3402

    Article  CAS  PubMed  Google Scholar 

  • Hollon T (2000) Researchers and regulators reflect on first gene therapy death. Nat Med 6:6

    Article  CAS  PubMed  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of slee** beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  CAS  PubMed  Google Scholar 

  • Ivics Z, Katzer A, Stuwe EE, Fiedler D, Knespel S, Izsvak Z (2007) Targeted slee** beauty transposition in human cells. Mol Ther 15:1137–1144

    CAS  PubMed  Google Scholar 

  • Izsvak Z, Ivics Z, Plasterk RH (2000) Slee** beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 302:93–102

    Article  CAS  PubMed  Google Scholar 

  • Izsvak Z, Chuah MK, Vandendriessche T, Ivics Z (2009) Efficient stable gene transfer into human cells by the slee** beauty transposon vectors. Methods 49:287–297

    Article  CAS  PubMed  Google Scholar 

  • Jozkowicz A, Dulak J (2005) Helper-dependent adenoviral vectors in experimental gene therapy. Acta Biochim Pol 52:589–599

    CAS  PubMed  Google Scholar 

  • Karsi A, Moav B, Hackett P, Liu ZJ (2001) Effects of insert size on transposition efficiency of the slee** beauty transposon in mouse cells. Mar Biotechnol 3:241–245

    Article  CAS  PubMed  Google Scholar 

  • Kaufman PD, Doll RF, Rio DC (1989) Drosophila-p-element transposase recognizes internal p-element dna-sequences. Cell 59:359–371

    Article  CAS  PubMed  Google Scholar 

  • Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(Suppl 1):S7

    Article  PubMed  Google Scholar 

  • Koga A, Hori H (2001) The Tol2 transposable element of the medaka fish: an active DNA-based element naturally occurring in a vertebrate genome. Genes Genet Syst 76:1–8

    Article  CAS  PubMed  Google Scholar 

  • Koga A, Higashide I, Hori H, Wakamatsu Y, Kyono-Hamaguchi Y, Hamaguchi S (2007) The Tol1 element of medaka fish is transposed with only terminal regions and can deliver large DNA fragments into the chromosomes. J Hum Genet 52:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Kuhstoss S, Rao RN (1991) Analysis of the integration function of the streptomycete bacteriophage-phi-c31. J Mol Biol 222:897–908

    Article  CAS  PubMed  Google Scholar 

  • Labas R, Beilvert F, Barteau B, David S, Chevre R, Pitard B (2010) Nature as a source of inspiration for cationic lipid synthesis. Genetica Epub ahead of print, doi: 10.1007/s10709-009-9405-8

  • Lampe DJ, Grant TE, Robertson HM (1998) Factors affecting transposition of the Himar1 mariner transposon in vitro. Genetics 149:179–187

    CAS  PubMed  Google Scholar 

  • Laufs S, Nagy KZ, Giordano FA, Hotz-Wagenblatt A, Zeller WJ, Fruehauf S (2004) Insertion of retroviral vectors in NOD/SCID repopulating human peripheral blood progenitor cells occurs preferentially in the vicinity of transcription start regions and in introns. Mol Ther 10:874–881

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lobo N, Bauser CA, Fraser MJ (2001) The minimum internal and external sequence requirements for transposition of the eukaryotic transformation vector piggyBac. Mol Genet Genomics 266:190–198

    Article  CAS  PubMed  Google Scholar 

  • Li X, Harrell RA, Handler AM, Beam T, Hennessy K, Fraser MJ (2005) piggyBac internal sequences are necessary for efficient transformation of target genomes. Insect Mol Biol 14:17–30

    Article  PubMed  CAS  Google Scholar 

  • Li J, Sun WC, Wang B, **ao X, Liu XQ (2008) Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther 19:958–964

    Article  CAS  PubMed  Google Scholar 

  • Lipkow K, Buisine N, Chalmers R (2004a) Promiscuous target interactions in the mariner transposon Himar1. J Biol Chem 279:48569–48575

    Article  CAS  PubMed  Google Scholar 

  • Lipkow K, Buisine N, Lampe DJ, Chalmers R (2004b) Early intermediates of mariner transposition: catalysis without synapsis of the transposon ends suggests a novel architecture of the synaptic complex. Mol Cell Biol 24:8301–8311

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Mack A, Wang RC, Galli M, Belk J, Ketpura NI, Crawford NM (2001) Functional dissection of the cis-acting sequences of the arabidopsis transposable element Tag1 reveals dissimilar subterminal sequence and minimal spacing requirements for transposition. Genetics 157:817–830

    CAS  PubMed  Google Scholar 

  • Liu F, Shollenberger LM, Huang L (2004) Non-immunostimulatory nonviral vectors. Faseb J 18:1779–1781

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Crellin P, Chalmers R (2005) Cyclic changes in the affinity of protein-DNA interactions drive the progression and regulate the outcome of the Tn10 transposition reaction. Nucleic Acids Res 33:1982–1992

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Jeppesen I, Nielsen K, Jensen TG (2006) phi c31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther 13:1188–1190

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Bischerour J, Siddique A, Buisine N, Bigot Y, Chalmers R (2007) The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase. Mol Cell Biol 27:1125–1132

    Article  PubMed  CAS  Google Scholar 

  • Lohe AR, Hartl DL (1996) Reduced germline mobility of a mariner vector containing exogenous DNA: effect of size or site? Genetics 143:1299–1306

    CAS  PubMed  Google Scholar 

  • Lozovsky ER, Nurminsky D, Wimmer EA, Hartl DL (2002) Unexpected stability of mariner transgenes in Drosophila. Genetics 160:527–535

    CAS  PubMed  Google Scholar 

  • Maragathavally KJ, Kaminski JM, Coates CJ (2006) Chimeric Mos1 and piggyBac transposases result in site-directed integration. Faseb J 20:1880

    Article  CAS  PubMed  Google Scholar 

  • Matthaei KI (2007) Genetically manipulated mice: a powerful tool with unsuspected caveats. J Physiol 582:481–488

    Article  CAS  PubMed  Google Scholar 

  • McCaffrey AP, Fawcett P, Nakai H, McCaffrey RL, Ehrhardt A, Pham TT, Pandey K, Xu H, Feuss S, Storm TA, Kay MA (2008) The host response to adenovirus, helper-dependent adenovirus, and adeno-associated virus in mouse liver. Mol Ther 16:931–941

    Article  CAS  PubMed  Google Scholar 

  • Mhashilkar A, Chada S, Roth JA, Ramesh R (2001) Gene therapy. Therapeutic approaches and implications. Biotechnol Adv 19:279–297

    Article  CAS  PubMed  Google Scholar 

  • Miskey C, Papp B, Mates L, Sinzelle L, Keller H, Izsvak Z, Ivics Z (2007) The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends. Mol Cell Biol 27:4589–4600

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi H, Kay MA, Hayakawa T (2001) Approaches for generating recombinant adenovirus vectors. Adv Drug Deliv Rev 52:165–176

    Article  CAS  PubMed  Google Scholar 

  • Montier T, Benvegnu T, Jaffres PA, Yaouanc JJ, Lehn P (2008) Progress in cationic lipid-mediated gene transfection: a series of bio-inspired lipids as an example. Curr Gene Ther 8:296–312

    Article  CAS  PubMed  Google Scholar 

  • Morisato D, Way JC, Kim HJ, Kleckner N (1983) Tn10 transposase acts preferentially on nearby transposon ends in vivo. Cell 32:799–807

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Lopez M, Siddique A, Bischerour J, Lorite P, Chalmers R, Palomeque T (2008) Transposition of Mboumar-9: identification of a new naturally active mariner-family transposon. J Mol Biol 382:567–572

    Article  CAS  PubMed  Google Scholar 

  • Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647–1652

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Urda S, Lin Q, Marinkovich M, Khavari P (2003) Injection of genetically-engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J Invest Dermatol 121:0627

    Google Scholar 

  • Palazzoli F, Carnus E, Wells DJ, Bigot Y (2008) Sustained transgene expression using non-viral enzymatic systems for stable chromosomal integration. Curr Gene Ther 8:367–390

    Article  CAS  PubMed  Google Scholar 

  • Pledger DW, Coates CJ (2005) Mutant Mos1 mariner transposons are hyperactive in Aedes aegypti. Insect Biochem Mol Biol 35:1199–1207

    Article  CAS  PubMed  Google Scholar 

  • Pledger DW, Fu YQ, Coates CJ (2004) Analyses of cis-acting elements that affect the transposition of Mos1 mariner transposons in vivo. Mol Gen Genomics 272:67–75

    Article  CAS  Google Scholar 

  • Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, Wilson JM, Batshaw ML (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158

    Article  CAS  PubMed  Google Scholar 

  • Robbins PD, Ghivizzani SC (1998) Viral vectors for gene therapy. Pharmacol Ther 80:35–47

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM, Zumpano KL (1997) Molecular evolution of an ancient mariner transposon, Hsmar1, in the human genome. Gene 205:203–217

    Article  CAS  PubMed  Google Scholar 

  • Rowley PA, Smith MC (2008) Role of the N-terminal domain of phiC31 integrase in attB-attP synapsis. J Bacteriol 190:6918–6921

    Article  CAS  PubMed  Google Scholar 

  • Rowley PA, Smith MC, Younger E, Smith MC (2008) A motif in the C-terminal domain of phiC31 integrase controls the directionality of recombination. Nucleic Acids Res 36:3879–3891

    Article  CAS  PubMed  Google Scholar 

  • Roy-Chowdhury J, Horwitz MS (2002) Evolution of adenoviruses as gene therapy vectors. Mol Ther 5:340–344

    Article  CAS  PubMed  Google Scholar 

  • Schaffer DV, Koerber JT, Lim KI (2008) Molecular engineering of viral gene delivery vehicles. Annu Rev Biomed Eng 10:169–194

    Article  CAS  PubMed  Google Scholar 

  • Sewitz S, Crellin P, Chalmers R (2003) The positive and negative regulation of Tn10 transposition by IHF is mediated by structurally asymmetric transposon arms. Nucleic Acids Res 31:5868–5876

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Liburd J, Wardle SJ, Haniford DB (2008) The nucleoid binding protein H-NS acts as an anti-channeling factor to favor intermolecular Tn10 transposition and dissemination. J Mol Biol 376:950–962

    Article  CAS  PubMed  Google Scholar 

  • Sinzelle L, Jegot G, Brillet B, Rouleux-Bonnin F, Bigot Y, Auge-Gouillou C (2008) Factors acting on Mos1 transposition efficiency. BMC Mol Biol 9:106

    Article  PubMed  CAS  Google Scholar 

  • Sun YH, Bakshi S, Chalmers R, Tang CM (2000) Functional genomics of Neisseria meningitidis pathogenesis. Nat Med 6:1269–1273

    Article  CAS  PubMed  Google Scholar 

  • Tafalla C, Estepa A, Coll JM (2006) Fish transposons and their potential use in aquaculture. J Biotechnol 123:397–412

    Article  CAS  PubMed  Google Scholar 

  • Tang CM, Stroud D, Mackinnon F, Makepeace K, Plested J, Moxon ER, Chalmers R (2002) Genetic linkage analysis to identify a gene required for the addition of phosphoethanolamine to meningococcal lipopolysaccharide. Gene 284:133–140

    Article  CAS  PubMed  Google Scholar 

  • Thyagarajan B, Guimaraes MJ, Groth AC, Calos MP (2000) Mammalian genomes contain active recombinase recognition sites. Gene 244:47–54

    Article  CAS  PubMed  Google Scholar 

  • Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP (2001) Site-specific genomic integration in mammalian cells mediated by phage phi C31 integrase. Mol Cell Biol 21:3926–3934

    Article  CAS  PubMed  Google Scholar 

  • Urasaki A, Morvan G, Kawakami K (2006) Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174:639–649

    Article  CAS  PubMed  Google Scholar 

  • Van Duyne GD (2001) A structural view of Cre-loxP site-specific recombination. Annu Rev Biophys Biomol Struct 30:87–104

    Article  PubMed  Google Scholar 

  • Volpers C, Kochanek S (2004) Adenoviral vectors for gene transfer and therapy. J Gene Med 6(Suppl 1):S164–S171

    Article  CAS  PubMed  Google Scholar 

  • Walther W, Siegel R, Kobelt D, Knosel T, Dietel M, Bembenek A, Aumann J, Schleef M, Baier R, Stein U, Schlag PM (2008) Novel jet-injection technology for nonviral intratumoral gene transfer in patients with melanoma and breast cancer. Clin Cancer Res 14:7545–7553

    Article  CAS  PubMed  Google Scholar 

  • Walther W, Fichtner I, Schlag PM, Stein US (2009) Nonviral jet-injection technology for intratumoral in vivo gene transfer of naked DNA. Methods Mol Biol 542:195–208

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Shayakhmetov DM, Leege T, Harkey M, Li Q, Papayannopoulou T, Stamatoyannopolous G, Lieber A (2005) A capsid-modified helper-dependent adenovirus vector containing the beta-globin locus control region displays a nonrandom integration pattern and allows stable, erythroid-specific gene expression. J Virol 79:10999–11013

    Article  CAS  PubMed  Google Scholar 

  • Wardle SJ, O’Carroll M, Derbyshire KM, Haniford DB (2005) The global regulator H-NS acts directly on the transpososome to promote Tn10 transposition. Genes Dev 19:2224–2235

    Article  CAS  PubMed  Google Scholar 

  • Warren D, Laxmikanthan G, Landy A (2008) A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci USA 105:18278–18283

    Article  CAS  PubMed  Google Scholar 

  • Warrick E, Bergoglio V, Bernerd F, Magnaldo T (2008) Epidermal stem cells and ex vivo cutaneous gene therapy: application to xeroderma pigmentosum. J Soc Biol 202:33–41

    Article  CAS  PubMed  Google Scholar 

  • Way JC, Kleckner N (1985) Transposition of plasmid-borne Tn10 elements does not exhibit simple length-dependence. Genetics 111:705–713

    CAS  PubMed  Google Scholar 

  • Whitfield CR, Wardle SJ, Haniford DB (2009) The global bacterial regulator H-NS promotes transpososome formation and transposition in the Tn5 system. Nucleic Acids Res 37:309–321

    Article  CAS  PubMed  Google Scholar 

  • Williams DA (2008) Slee** beauty vector system moves toward human trials in the United States. Mol Ther 16:1515–1516

    Article  CAS  PubMed  Google Scholar 

  • Wilson MH, Coates CJ, George AL (2007) PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15:139–145

    Article  CAS  PubMed  Google Scholar 

  • Yant SR, Ehrhardt A, Mikkelsen JG, Meuse L, Pham T, Kay MA (2002) Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol 20:999–1005

    Article  CAS  PubMed  Google Scholar 

  • Young LS, Searle PF, Onion D, Mautner V (2006) Viral gene therapy strategies: from basic science to clinical application. J Pathol 208:299–318

    Article  CAS  PubMed  Google Scholar 

  • Zayed H, Izsvak Z, Khare D, Heinemann U, Ivics Z (2003) The DNA-bending protein HMGB1 is a cellular cofactor of Slee** Beauty transposition. Nucleic Acids Res 31:2313–2322

    Article  CAS  PubMed  Google Scholar 

  • Zayed H, Izsvak Z, Walisko O, Ivics Z (2004) Development of hyperactive Slee** beauty transposon vectors by mutational analysis. Mol Ther 9:292–304

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the European Commission (Project SyntheGeneDelivery, N°018716). We would like to thank Louis Marsh for re-plotting the graphs in Fig. 4 and Zoltan Ivics for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Chalmers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkinson, H., Chalmers, R. Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica 138, 485–498 (2010). https://doi.org/10.1007/s10709-009-9434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9434-3

Keywords

Navigation