Log in

Life cycle assessment of construction and demolition waste management: a case study of Mashhad, Iran

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In the case of building demolition, the construction industry increasingly prioritizes sustainable waste management and environmental protection. Life cycle assessment (LCA) was used to assess two scenarios to evaluate the environmental impacts of four methods (demolition, transport, recycling, and landfills). To conduct an Attributional LCA, the SimaPro software suite and Ecoinvent v.3 Life Cycle Inventory database were applied. LCA showed that construction and demolition (CDW) management has major environmental effects on global warming, fine particulate matter formation, human carcinogenic toxicity, and human non-carcinogenic toxicity. The results indicate the beneficial environmental impact of two waste management scenarios. The extent to which recycling waste from building demolition can benefit the environment is dependent on the type of material being recycled. Copper recycling can reduce the building industry’s environmental impact. Human non-carcinogenic toxicity is the most important and beneficial factor. Previous research has largely neglected this stage. The findings indicated that environmental conditions have a significance impact and, accordingly, the optimal scenario. This study provides stakeholders with a road map for making informed decisions regarding the application of CDW management. It suggests that LCA studies should take multiple indicators into account, and sensitivity and uncertainty analyses were performed to evaluate the accuracy of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CDW:

Construction and demolition waste

LCA:

Life Cycle Assessment

LCIA:

Life Cycle Impact Assessment

ISO:

International Organization of Standardization

CCH:

Global warming, Human health

CCT:

Global warming, Terrestrial ecosystems

CCF:

Global warming, Freshwater ecosystems

OD:

Stratospheric ozone depletion

IR:

Ionizing radiation

OFH:

Ozone formation, Human health

PMF:

Fine particulate matter formation

OFT:

Ozone formation, Terrestrial ecosystems

TA:

Terrestrial acidification

FE:

Freshwater eutrophication

ME:

Marine eutrophication

TET:

Terrestrial ecotoxicity

FET:

Freshwater ecotoxicity

MET:

Marine ecotoxicity

HT:

Human carcinogenic toxicity

HTN:

Human non-carcinogenic toxicity

LU:

Land use

MRD:

Mineral resource scarcity

FD:

Fossil resource scarcity

WDH:

Water consumption, Human health

WDT:

Water consumption, Terrestrial ecosystem

WDA:

Water consumption, Aquatic ecosystems

HH:

Human health

ED:

Ecosystems

RA:

Resources

References

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Abdoli.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The details of unit processes included in the system boundary

Source: (Ecoinvent, 2023; SimaPro, 2016).

Appendix B: Uncertainty analysis for input parameters in modeling CDW management of a demolition, b transport, c processing, and d disposal

Appendix C: Environmental indicators in The ReCiPe method. Source (Goedkoop et al., 2009)

Abbreviation signs

Impact category

Unit

Description

CC

Global warming

DALY species.yr

Global warming has had a detrimental effect on human health, terrestrial and freshwater ecosystems, resulting in malnutrition, cardiovascular diseases, respiratory problems, natural disasters, elevated temperatures, decreased water supply, and the decline of land species

OD

Stratospheric ozone depletion

DALY

Stratospheric ozone depletion, which has caused a thinning of the ozone layer, has had detrimental effects on human health, such as an increased risk of skin cancer and cataract

IR

Ionizing radiation

DALY

Ionizing radiation is a type of radiation that carries enough energy to disrupt atoms, resulting in potential health risks such as fatal cancer, non-fatal cancer, and severe hereditary effects

OFH

Ozone formation, Human health

DALY

Ozone is not emitted directly into the atmosphere, yet it is created through photochemical reactions of NOx and non-methane volatile organic compounds (NMVOCs)

PMF

Fine particulate matter formation

DALY

Fine particulate matter formation is a major contributor to air pollution, posing a serious risk to human health. Common pollutants include sulfur dioxide (SO2), ammonia (NH3), nitrous oxides (NOx), and particulate matter 2.5 (PM2.5)

OFT

Ozone formation, Terrestrial ecosystems

species.yr

Ozone formation and its effects on terrestrial ecosystems may have detrimental consequences on both terrestrial plant life and aquatic ecosystems

TA

Terrestrial acidification

species.yr

Terrestrial acidification is the process of raising acidity levels in soil and water, caused by an influx of compounds such as sulfates, nitrates, and phosphates

FE

Freshwater eutrophication

species.yr

Freshwater eutrophication is an overabundance of nutrients in a body of water, resulting in an overgrowth of aquatic plants and a decrease in water quality. These nutrients can come from sources such as manure, fertilizer, and wastewater treatment plants

ME

Marine eutrophication

species.yr

Marine eutrophication, caused by an increase in nutrients such as manure N, fertilizer N, and N from STP, can lead to excessive plant and algae growth, ultimately damaging the marine environment

TET

Terrestrial ecotoxicity

species.yr

Terrestrial ecotoxicity refers to the detrimental impacts of chemicals and other pollutants on the environment and its inhabitants. These toxins may affect the ecosystem’s habitat, biodiversity, and wildlife’s health

FET

Freshwater ecotoxicity

species.yr

Freshwater ecotoxicity is the harmful effect of pollutants on aquatic ecosystems

MET

Marine ecotoxicity

species.yr

Marine ecotoxicity refers to the detrimental impacts of pollutants on marine ecosystems and organisms

HT

Human carcinogenic toxicity

DALY

Human carcinogenic toxicity is the potential for a substance to cause cancer in humans

HTN

Human non-carcinogenic toxicity

DALY

Human non-carcinogenic toxicity is a type of toxicity that does not cause cancer in humans

LU

Land use

species.yr

Land use is the management or change of natural environments for human use and benefit, such as for occupancy and transportation

MRD

Mineral resource scarcity

USD2013

Mineral resource scarcity is the lack of availability of minerals due to their finite nature

FD

Fossil resource scarcity

USD2013

Fossil resource scarcity refers to the decreasing availability of fossil fuels due to their finite nature

WD

Water consumption

DALY species.yr

The consumption of water can have a significant negative impact on human health, terrestrial ecosystems and aquatic ecosystems

Appendix D: Characterization, normalization, and weighting impacts for the analysis impact categories for four cases (C1: demolition, C2: transport, C3: processing, and C4: disposal)

 

Unit

C1 (Demolition)

C2 (Transport)

C3 (Processing)

C4 (Disposal)

Total

CCH

DALY

2.20E−06

4.19E−06

2.98E−06

3.66E−06

 

Pt

9.28E−05

1.76E−04

1.25E−04

1.54E−04

5.49E−04

%

9.55

18.15

12.90

15.85

56.451

CCT

species.yr

6.65E−09

1.26E−08

8.99E−09

1.10E−08

 

Pt

9.29E−06

1.77E−05

1.26E−05

1.54E−05

5.49E−05

%

0.96

1.82

1.29

1.59

5.649

CCF

species.yr

1.82E−13

3.45E−13

2.45E−13

3.02E−13

 

Pt

2.54E−10

4.82E−10

3.43E−10

4.21E−10

1.50E−09

%

0.00

0.00

0.00

0.00

0.000

OD

DALY

4.29E−10

8.09E−10

3.69E−09

1.25E−09

 

Pt

1.81E−08

3.41E−08

1.55E−07

5.28E−08

2.60E−07

%

0.00

0.00

0.02

0.01

0.027

IR

DALY

9.05E−10

6.86E−10

5.44E−09

6.79E−10

 

Pt

3.81E−08

2.89E−08

2.29E−07

2.86E−08

3.25E−07

%

0.00

0.00

0.02

0.00

0.033

OFH

DALY

4.60E−09

2.83E−08

−5.67E−09

3.61E−08

 

Pt

1.94E−07

1.19E−06

−2.39E−07

1.52E−06

2.66E−06

%

0.02

0.12

−0.02

0.16

0.274

PMF

DALY

2.25E−06

4.63E−06

−5.26E−06

6.50E−06

 

Pt

9.48E−05

1.95E−04

−2.22E−04

2.74E−04

3.42E−04

%

9.76

20.07

−22.80

28.15

35.173

OFT

species.yr

6.75E−10

4.07E−09

−7.93E−10

5.21E−09

 

Pt

9.43E−07

5.68E−06

−1.11E−06

7.27E−06

1.28E−05

%

0.10

0.58

−0.11

0.75

1.316

TA

species.yr

1.60E−09

3.66E−09

−1.41E−09

4.56E−09

 

Pt

2.23E−06

5.12E−06

−1.97E−06

6.37E−06

1.17E−05

%

0.23

0.53

−0.20

0.66

1.208

FE

species.yr

5.37E−10

2.35E−10

−2.99E−08

2.10E−10

 

Pt

7.50E−07

3.29E−07

−4.17E−05

2.93E−07

−4.03E−05

%

0.08

0.03

−4.29

0.03

−4.150

ME

species.yr

8.52E−14

4.81E−14

−4.06E−13

2.11E−13

 

Pt

1.19E−10

6.71E−11

−5.67E−10

2.94E−10

−8.69E−11

%

0.00

0.00

0.00

0.00

0.000

TET

species.yr

1.33E−10

6.70E−10

−1.79E−09

6.50E−11

 

Pt

1.85E−07

9.35E−07

−2.50E−06

9.07E−08

−1.29E−06

%

0.02

0.10

−0.26

0.01

−0.132

FET

species.yr

6.52E−11

4.50E−11

−5.45E−09

1.29E−10

 

Pt

9.10E−08

6.28E−08

−7.61E−06

1.80E−07

−7.28E−06

%

0.01

0.01

−0.78

0.02

−0.749

MET

species.yr

1.43E−11

1.24E−11

−1.16E−09

2.45E−11

 

Pt

2.00E−08

1.73E−08

−1.62E−06

3.42E−08

−1.55E−06

%

0.00

0.00

−0.17

0.00

−0.160

HT

DALY

1.19E−06

3.21E−07

1.54E−05

2.89E−07

 

Pt

5.00E−05

1.35E−05

6.49E−04

1.22E−05

7.25E−04

%

5.14

1.39

66.82

1.25

74.599

HTN

DALY

6.70E−07

6.28E−07

−6.55E−05

2.45E−07

 

Pt

2.82E−05

2.64E−05

−2.76E−03

1.03E−05

−2.69E−03

%

2.90

2.72

−283.74

1.06

−277.057

LU

species.yr

4.86E−10

1.65E−09

6.32E−10

5.32E−09

 

Pt

6.79E−07

2.30E−06

8.82E−07

7.43E−06

1.13E−05

%

0.07

0.24

0.09

0.76

1.162

MRD

USD2013

6.44E−03

1.88E−03

−1.64E−01

1.88E−03

 

Pt

2.30E−07

6.73E−08

−5.85E−06

6.71E−08

−5.48E−06

%

0.01

0.00

−0.30

0.00

−0.282

FD

USD2013

2.85E−01

6.79E−01

9.71E−01

7.35E−01

 

Pt

1.02E−05

2.42E−05

3.47E−05

2.62E−05

9.53E−05

%

0.52

1.25

1.78

1.35

4.904

WDH

DALY

3.69E−08

2.40E−08

1.75E−07

9.74E−08

 

Pt

1.55E−06

1.01E−06

7.36E−06

4.10E−06

1.40E−05

%

0.16

0.10

0.76

0.42

1.443

WDT

species.yr

2.14E−10

1.47E−10

1.07E−09

5.93E−10

 

Pt

2.98E−07

2.05E−07

1.49E−06

8.28E−07

2.82E−06

%

0.03

0.02

0.15

0.09

0.290

WDA

species.yr

1.07E−14

7.64E−15

4.94E−14

2.73E−14

 

Pt

1.50E−11

1.07E−11

6.90E−11

3.82E−11

1.33E−10

%

0.00

0.00

0.00

0.00

0.000

Total

 

Pt

2.93E−04

4.70E−04

−2.21E−03

5.20E−04

−9.27E−04

%

29.563016

47.137562

−228.84921

52.148633

−100

Appendix E: Sensitivity analysis for input parameters in modeling CDW management, especially for C1: Demolition and C3: Processing

 

Sij = ((y2−y1)/y1) × 10

CDWM

C1

C3

C1

C2

C3

C4

Building machine

Plastic

Container

Electricity

Recycle of Aluminum

Recycle of Gravel

Recycle of Steel

Recycle of Wood

CCH

0.17

0.32

0.23

0.28

0.15

0.36

0.13

0.24

0.45

0.26

0.39

0.1

CCT

0.17

0.32

0.23

0.28

0.15

0.36

0.13

0.24

0.45

0.26

0.39

0.1

CCF

0.17

0.32

0.23

0.28

0.15

0.36

0.13

0.24

0.45

0.26

0.39

0.1

OD

0.07

0.13

0.6

0.2

0.13

0.24

0.14

0.37

0.21

0.29

0.98

0.09

IR

0.12

0.09

0.71

0.09

0.19

0.41

0.17

0.12

0.6

0.03

0.41

0.02

OFH

0.07

0.45

0.09

0.57

0.16

0.37

0.15

0.21

0.74

1.19

0.72

0.22

PMF

0.28

0.57

0.65

0.8

0.18

0.34

0.18

0.17

0.95

0.56

2.29

0.23

OFT

0.07

0.44

0.09

0.57

0.16

0.38

0.15

0.21

0.64

1.05

0.49

0.21

TA

0.19

0.44

0.17

0.54

0.14

0.37

0.15

0.24

1.54

1.17

1.36

0.34

FE

0.02

0.01

1.03

0.01

0.24

0.32

0.26

0.02

0.07

0.01

1.07

0.02

ME

1.37

0.77

6.52

3.38

0.17

0.33

0.29

0.03

0.23

0.04

0.74

0.08

TET

0.14

0.73

1.94

0.07

0.09

0.26

0.32

0.08

0.01

0.11

1.06

0.05

FET

0.01

0.01

1.05

0.02

0.2

0.23

0.34

0.02

0.01

0.01

1.01

0.03

MET

0.01

0.01

1.05

0.02

0.19

0.23

0.34

0.02

0.02

0.01

1.02

0.02

HT

0.07

0.02

0.9

0.02

0.32

0.1

0.36

0.01

0.03

0

1.02

0.01

HTN

0.01

0.01

1.02

0

0.18

0.23

0.34

0.02

0.01

0.02

1.01

0.02

LU

0.06

0.2

0.08

0.66

0.09

0.29

0.32

0.01

0.4

0.14

0.45

0.3

MRD

0.04

0.01

1.07

0.01

0.34

0.08

0.35

0.01

0.12

0.02

1.09

0.07

FD

0.11

0.25

0.36

0.28

0.07

0.52

0.06

0.28

0.01

1.47

2.16

0.3

WDH

0.11

0.07

0.52

0.29

0.15

0.52

0.13

0.1

0.04

0.04

0.94

0.05

WDT

0.11

0.07

0.53

0.29

0.15

0.55

0.14

0.05

0.05

0.04

0.93

0.05

WDA

0.11

0.08

0.52

0.29

0.18

0.55

0.16

0

0.16

0.04

0.82

0.06

Total

0.3

0.47

2.29

0.52

0.19

0.3

0.21

0.16

0.1

0.06

1.13

0.03

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakerhosseini, A., Abdoli, M.A., Molayzahedi, S.M. et al. Life cycle assessment of construction and demolition waste management: a case study of Mashhad, Iran. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-03703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-03703-1

Keywords

Navigation