Log in

Low-carbon production or not? Co-opetition supply chain manufacturers’ production strategy under carbon cap-and-trade policy

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Given the background of supply chain globalization, whether supply chain manufacturers will actively choose low-carbon products for production under the restrictions of a low-carbon policy, is a subject of interest. Based on Stackelberg game theory, this study constructed a competition and cooperation game model of two supply chain manufacturers operating under the carbon cap-and-trade policy launched in China. The study also discussed the effects of the carbon cap-and-trade policy, carbon quota, and market competition intensity on the co-opetition supply chain manufacturers’ production options for low-carbon products. Interestingly, the results indicate that the low-carbon production selection strategies of downstream manufacturers are affected by the intensity of market competition when upstream manufacturers produce common products. However, when upstream manufacturers manufacture low-carbon products, the main factor affecting the low-carbon production selection strategy of downstream manufacturers becomes carbon policy factors, rather than the intensity of market competition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bouncken, R. B., Gast, J., Kraus, S., & Bogers, M. (2015). Coopetition: A systematic review, synthesis, and future research directions. Review of Managerial Science, 9(3), 577–601.

    Article  Google Scholar 

  • Brandner, R., Flatscher, G., Ringhofer, A., Schickhofer, G., & Thiel, A. (2016). Cross laminated timber (CLT): Overview and development. European Journal of Wood and Wood Products, 74(3), 331–351.

    Article  CAS  Google Scholar 

  • Cao, K., Xu, B., & Wang, J. (2020). Optimal trade-in and warranty period strategies for new and remanufactured products under carbon tax policy. International Journal of Production Research, 58(1), 180–199.

    Article  Google Scholar 

  • Chen, X., Wang, X. J., & **a, Y. S. (2019). Production coopetition strategies for competing manufacturers that produce partially substitutable products. Production and Operations Management, 28(6), 1446–1464.

    Article  Google Scholar 

  • Christ, K. L., Burritt, R. L., & Varsei, M. (2017). Coopetition as a potential strategy for corporate sustainability. Business Strategy and the Environment, 26(7), 1029–1040.

    Article  Google Scholar 

  • De, M., & Giri, B. C. (2020). Modelling a closed-loop supply chain with a heterogeneous fleet under carbon emission reduction policy. Transportation Research Part E, 133, 101813.

    Article  Google Scholar 

  • Du, S. F., Tang, W. Z., & Song, M. (2016). Low-carbon production with low-carbon premium in cap-and-trade regulation. Journal of Cleaner Production, 134, 652–662.

    Article  Google Scholar 

  • Huang, Y., Fang, C., & Lin, Y. (2020). Inventory management in supply chains with consideration of Logistics, green investment and different carbon emissions policies. Computers and Industrial Engineering, 139, 106207.

    Article  Google Scholar 

  • Ji, J. N., Zhang, Z. Y., & Yang, L. (2017). Carbon emission reduction decisions in the retail-/dual-channel supply chain with consumers’ preference. Journal of Cleaner Production, 141, 852–867.

    Article  Google Scholar 

  • Jiang, W., Yuan, L., Wu, L., & Guo, S. (2019). Carbon emission reduction and profit distribution mechanism of construction supply chain with fairness concern and cap-and-trade. PLoS ONE, 14(10), e0224153.

    Article  CAS  Google Scholar 

  • Jiang, X. (2014). The rise of carbon emissions trading in China: A panacea for climate change? Climate and Development, 6(2), 111–121.

    Article  Google Scholar 

  • Kang, K., Zhao, Y., Zhang, J., & Qiang, C. (2019). Evolutionary game theoretic analysis on low-carbon strategy for supply chain enterprises. Journal of Cleaner Production, 230, 981–994.

    Article  Google Scholar 

  • Levy, M., Loebbecke, C., & Powell, P. (2003). SMEs, co-opetition and knowledge sharing: The role of information systems. European Journal of Information Systems, 12(1), 3–17.

    Article  Google Scholar 

  • Li, Y., Zhao, R., Liu, T., & Zhao, J. (2015). Does urbanization lead to more direct and indirect household carbon dioxide emissions? Evidence from China during 1996–2012. Journal of Cleaner Production, 102, 103–114.

    Article  CAS  Google Scholar 

  • Liu, Z., Li, K. W., Tang, J., Gong, B., & Huang, J. (2021a). Optimal operations of a closed-loop supply chain under a dual regulation. International Journal of Production Economics, 233, 107991.

    Article  Google Scholar 

  • Liu, Z., Tang, J., Li, B. Y., & Wang, Z. (2017). Trade-off between remanufacturing and recycling of WEEE and the environmental implication under the Chinese Fund Policy. Journal of Cleaner Production, 167, 97–109.

    Article  Google Scholar 

  • Liu, Z., Zheng, X., Li, D., Liao, C., & Sheu, J. (2021b). A novel cooperative game-based method to coordinate a sustainable supply chain under psychological uncertainty in fairness concerns. Transportation Research Part E, 147, 102237.

    Article  Google Scholar 

  • Luo, Z., Chen, X., & Wang, X. J. (2016). The role of co-opetition in low carbon manufacturing. European Journal of Operational Research, 253(2), 392–403.

    Article  Google Scholar 

  • Ma, X., Ge, J., & Wang, W. (2017). The relationship between urbanization, income growth and carbon dioxide emissions and the policy implications for China: A cointegrated vector error correction (VEC) analysis. Natural Hazards, 87(2), 1017–1033.

    Article  Google Scholar 

  • Ming, Y., Grabot, B., & Houé, R. (2014). A typology of the situations of cooperation in supply chains. Computers and Industrial Engineering, 67, 56–71.

    Article  Google Scholar 

  • Nie, P. (2012). A note on dynamic Stackelberg games with leaders in turn. Nonlinear Analysis: Real World Applications, 13(1), 85–90.

    Article  Google Scholar 

  • Pang, T., & Duan, M. S. (2016). Cap setting and allowance allocation in China’s emissions trading pilot programmes: Special issues and innovative solutions. Climate Policy, 16(7), 815–835.

    Article  Google Scholar 

  • Pathak, S. D., Wu, Z. H., & Johnston, D. (2014). Toward a structural view of co-opetition in supply networks. Journal of Operations Management, 32(5), 254–267.

    Article  Google Scholar 

  • Peng, H. J., Pang, T., & Cong, J. (2018). Coordination contracts for a supply chain with yield uncertainty and low-carbon preference. Journal of Cleaner Production, 205, 291–302.

    Article  Google Scholar 

  • Peng, T. J. A., Yen, M. H., & Bourne, M. (2017). How rival partners compete based on cooperation? Long Range Planning, 51(2), 351–383.

    Article  Google Scholar 

  • Qi, Q., Wang, J., & Xu, J. (2018). A dual-channel supply chain coordination under carbon cap-and-trade regulation. International Journal of Environmental Research and Public Health, 15(7), 1316.

    Article  Google Scholar 

  • Qu, S., Yang, H., & Ji, Y. (2021). Low-carbon supply chain optimization considering warranty period and carbon emission reduction level under cap-and-trade regulation. Environment, Development and Sustainability, 1–28.

  • Song, S., Govindan, K., Xu, L., Du, P., & Qiao, X. (2017). Capacity and production planning with carbon emission constraints. Transportation Research Part E, 97, 132–150.

    Article  Google Scholar 

  • Tong, W., Mu, D., Zhao, F., Mendis, G. P., & Sutherland, J. W. (2019). The impact of cap-and-trade mechanism and consumers’ environmental preferences on a retailer-led supply Chain. Resources, Conservation and Recycling, 142, 88–100.

    Article  Google Scholar 

  • Toptal, A., Özlü, H., & Konur, D. (2014). Joint decisions on inventory replenishment and emission reduction investment under different emission regulations. International Journal of Production Research, 52(1), 243–269.

    Article  Google Scholar 

  • UNFCCC. Adoption of the Paris agreement. Report no. FCCC/CP/2015/L.9/Rev

  • Wang, S., Wan, L., Li, T., Luo, B., & Wang, C. (2018). Exploring the effect of cap-and-trade mechanism on firm’s production planning and emission reduction strategy. Journal of Cleaner Production, 172, 591–601.

    Article  Google Scholar 

  • Wang, X. P., Sun, D. C., & Yao, T. D. (2016). Climate change and global cycling of persistent organic pollutants: A critical review. Science China Earth Sciences, 59(10), 1899–1911.

    Article  Google Scholar 

  • Wilhelm, M., & Sydow, J. (2018). Managing coopetition in supplier networks—A paradox perspective. Journal of Supply Chain Management, 54(3), 22–41.

    Article  Google Scholar 

  • Williams, R. G., Roussenov, V., Goodwin, P., Resplandy, L., & Bopp, L. (2017). Sensitivity of global warming to carbon emissions: Effects of heat and carbon uptake in a suite of earth system models. Journal of Climate, 30(23), 9343–9363.

    Article  Google Scholar 

  • **a, L., Hao, W., Qin, J., Ji, F., & Yue, X. (2018). Carbon emission reduction and promotion policies considering social preferences and consumers’ low-carbon awareness in the cap-and-trade system. Journal of Cleaner Production, 195, 1105–1124.

    Article  Google Scholar 

  • Xu, X., Xu, X., & He, P. (2016). Joint production and pricing decisions for multiple products with cap-and-trade and carbon tax regulations. Journal of Cleaner Production, 112(5), 4093–4106.

    Article  Google Scholar 

  • Xu, X. P., Zhang, W., He, P., & Xu, X. (2017). Production and pricing problems in make-to-order supply chain with cap-and-trade regulation. Omega, 66, 248–257.

    Article  Google Scholar 

  • Yang, L., Ji, J. N., Wang, M., & Wang, Z. Z. (2018). The manufacturer’s joint decisions of channel selections and carbon emission reductions under the cap-and-trade regulation. Journal of Cleaner Production, 193, 506–523.

    Article  Google Scholar 

  • Zaman, K., & Moemen, M. A. (2017). Energy consumption, carbon dioxide emissions and economic development: Evaluating alternative and plausible environmental hypothesis for sustainable growth. Renewable and Sustainable Energy Reviews, 74, 1119–1130.

    Article  Google Scholar 

  • Zhang, J., & Frazier, G. V. (2011). Strategic alliance via co-opetition: Supply chain partnership with a competitor. Decision Support Systems, 51(4), 853–863.

    Article  Google Scholar 

  • Zhang, L., Zhou, H., Liu, Y., & Lu, R. (2018). The optimal carbon emission reduction and prices with cap and trade mechanism and competition. International Journal of Environmental Research and Public Health, 15(11), 2570.

    Article  CAS  Google Scholar 

  • Zhang, S., Wang, C., Yu, C., & Ren, Y. (2019a). Governmental cap regulation and manufacturer’s low carbon strategy in a supply chain with different power structures. Computers and Industrial Engineering, 134, 27–36.

    Article  Google Scholar 

  • Zhang, S., Zhuang, Y., Liu, L., Zhang, L., & Du, J. (2019b). Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty. Renewable and Sustainable Energy Reviews, 113, 109280.

    Article  Google Scholar 

  • Zhang, X. M., Li, Q. W., Liu, Z., & Chang, C. T. (2021). Optimal pricing and remanufacturing mode in a closed-loop supply chain of WEEE under government fund policy. Computers and Industrial Engineering, 151(8), 106951.

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Sichuan Social Science Key Research Base Research Project (Grant No. Xq18B05) and Project of Science and Technology Department of Sichuan Province (Grant No. 22RKX0662).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

In the range of \(0 < p_{0} < p_{0}^{a} = {1 \mathord{\left/ {\vphantom {1 {e\left( {1 - \theta } \right)}}} \right. \kern-\nulldelimiterspace} {e\left( {1 - \theta } \right)}}\) and \(p_{1}^{{CC^{ * } }} > 0,p_{2}^{{CC^{ * } }} > 0,w^{{CC^{ * } }} > 0,D_{1}^{{CC^{ * } }} > 0,D_{2}^{{CC^{ * } }} > 0\), we are able to find the partial derivatives with respect to \(\theta\) separately:

$$\left\{ \begin{gathered} \frac{{\partial p_{1}^{{CC^{ * } }} }}{\partial \theta } = \frac{1}{{2\left( {1 - \theta } \right)^{2} }} > 0,\frac{{\partial p_{2}^{{CC^{ * } }} }}{\partial \theta } = \frac{{ep_{0} \theta \left( {\theta - 2} \right) + ep_{0} + 2}}{{4\left( {1 - \theta } \right)^{2} }} > 0,\frac{{\partial w^{{CC^{ * } }} }}{\partial \theta } = \frac{1}{{2\left( {1 - \theta } \right)^{2} }} > 0 \hfill \\ \frac{{\partial D_{1}^{{CC^{ * } }} }}{\partial \theta } = \frac{{ep_{0} \left( {1 + 2\theta } \right) + 1}}{4} > 0,\frac{{\partial D_{2}^{{CC^{ * } }} }}{\partial \theta } = \frac{{ep_{0} }}{4} > 0 \hfill \\ \end{gathered} \right.$$

Similarly, we seek the partial derivatives of \(p_{0}\) separately:

$$\left\{ \begin{gathered} \frac{{\partial p_{1}^{{CC^{ * } }} }}{{\partial p_{0} }} = \frac{e}{2} > 0,\frac{{\partial p_{2}^{{CC^{ * } }} }}{{\partial p_{0} }} = \frac{e(\theta + 1)}{4} > 0,\frac{{\partial w^{{CC^{ * } }} }}{{\partial p_{0} }} = - \frac{e}{2} < 0 \hfill \\ \frac{{\partial D_{1}^{{CC^{ * } }} }}{{\partial p_{0} }} = \frac{{e\left( {2 + \theta } \right)(\theta - 1)}}{4} < 0,\frac{{\partial D_{2}^{{CC^{ * } }} }}{{\partial p_{0} }} = \frac{e(\theta - 1)}{4} < 0 \hfill \\ \end{gathered} \right.$$

Proof of Theorem 2

In the range of \(\frac{c - 1}{{e\theta }} = p_{0}^{b} < p_{0} < p_{0}^{c} = \frac{2 + \theta (1 + c)}{{e(2 - \theta^{2} )}}\) and \(c < \frac{1}{1 - \theta }\), we are able to find the partial derivatives with respect to \(p_{0}\) and \(\theta\) separately:

$$\left\{ \begin{gathered} \frac{{\partial p_{1}^{{CL^{ * } }} }}{{\partial p_{0} }} = \frac{e}{2} > 0,\frac{{\partial p_{2}^{{CL^{ * } }} }}{{\partial p_{0} }} = \frac{e(\theta + 1)}{4} > 0,\frac{{\partial w^{{CL^{ * } }} }}{{\partial p_{0} }} = 0 \hfill \\ \frac{{\partial D_{1}^{{CL^{ * } }} }}{{\partial p_{0} }} = \frac{{e(\theta^{2} - 2)}}{4} > 0,\frac{{\partial D_{2}^{{CL^{ * } }} }}{{\partial p_{0} }} = \frac{e\theta }{4} > 0 \hfill \\ \end{gathered} \right.$$
$$\left\{ \begin{gathered} \frac{{\partial p_{1}^{{CL^{ * } }} }}{\partial \theta } = \frac{1}{{2(\theta - 1)^{2} }} > 0,\frac{{\partial p_{2}^{{CL^{ * } }} }}{\partial \theta } = \frac{{2 + ep_{0} (\theta - 1)^{2} }}{{4(\theta - 1)^{2} }} > 0,\frac{{\partial w^{{CL^{ * } }} }}{\partial \theta } = \frac{1}{{2(\theta - 1)^{2} }} > 0 \hfill \\ \frac{{\partial D_{1}^{{CL^{ * } }} }}{\partial \theta } = \frac{{1 + c + ep_{0} \theta }}{4} > 0,\frac{{\partial D_{2}^{{CL^{ * } }} }}{\partial \theta } = \frac{{ep_{0} }}{4} > 0 \hfill \\ \end{gathered} \right.$$

Proof of Theorem 3

Because \(p_{1}^{{LC^{ * } }} > 0,p_{2}^{{LC^{ * } }} > 0,w^{{LC^{ * } }} > 0,D_{1}^{{LC^{ * } }} > 0,D_{2}^{{LC^{ * } }} > 0\) in the range of \(\frac{{2c - 2 - \theta - c\theta^{2} }}{e\theta } = p_{0}^{d} < p_{0} < p_{0}^{e} = \frac{1 + c\theta }{e}\), we can find the partial derivatives with respect to \(p_{0}\) separately:

$$\left\{ \begin{gathered} \frac{{\partial p_{1}^{{LC^{ * } }} }}{{\partial p_{0} }} = 0,\frac{{\partial p_{2}^{{LC^{ * } }} }}{{\partial p_{0} }} = \frac{e}{4} > 0,\frac{{\partial w^{{LC^{ * } }} }}{{\partial p_{0} }} = - \frac{e}{2} < 0 \hfill \\ \frac{{\partial D_{1}^{{LC^{ * } }} }}{{\partial p_{0} }} = \frac{e\theta }{4} > 0,\frac{{\partial D_{2}^{{LC^{ * } }} }}{{\partial p_{0} }} = - \frac{e}{4} < 0 \hfill \\ \end{gathered} \right.$$

Similarly, we seek the partial derivatives of \(\theta\) separately:

$$\left\{ \begin{gathered} \frac{{\partial p_{1}^{{LC^{ * } }} }}{\partial \theta } = \frac{1}{{2(\theta - 1)^{2} }} > 0,\frac{{\partial p_{2}^{{LC^{ * } }} }}{\partial \theta } = \frac{{2 + c(\theta - 1)^{2} }}{{4(\theta - 1)^{2} }} > 0,\frac{{\partial w^{{LC^{ * } }} }}{\partial \theta } = \frac{1}{{2(\theta - 1)^{2} }} > 0 \hfill \\ \frac{{\partial D_{1}^{{LC^{ * } }} }}{\partial \theta } = \frac{{1 + 2c\theta + ep_{0} }}{4} > 0,\frac{{\partial D_{2}^{{LC^{ * } }} }}{\partial \theta } = \frac{c}{4} > 0 \hfill \\ \end{gathered} \right.$$

Proof of Theorem 4

Based on Assumption 1, \(p_{0}\) does not affect the operational strategies of manufacturers when they both produce low-carbon products. Thus, we seek partial derivatives of \(\theta\) separately:

$$\left\{ \begin{gathered} \frac{{\partial p_{1}^{{LL^{ * } }} }}{\partial \theta } = \frac{1}{{2(\theta - 1)^{2} }} > 0,\frac{{\partial p_{2}^{{LL^{ * } }} }}{\partial \theta } = \frac{{2 + c(\theta - 1)^{2} }}{{4(\theta - 1)^{2} }} > 0,\frac{{\partial w^{{LL^{ * } }} }}{\partial \theta } = \frac{1}{{2(\theta - 1)^{2} }} > 0 \hfill \\ \frac{{\partial D_{1}^{{LL^{ * } }} }}{\partial \theta } = \frac{1 + c(1 + 2\theta )}{4} > 0,\frac{{\partial D_{2}^{{LL^{ * } }} }}{\partial \theta } = \frac{c}{4} > 0 \hfill \\ \end{gathered} \right.$$

Proof of Theorem 5

According to Eq. (9), we can first obtain \(c^{2} - 2c - e^{2} p_{0}^{2} (1 - 2\theta ) + p_{0} (2e - 16q_{2} - 2ce\theta ) = 0\), and subsequently receive:

$$\left\{ \begin{gathered} p_{0}^{1} = \frac{{8q_{2} + ce\theta - e + \sqrt {64q_{2}^{2} + e^{2} (1 - c + c\theta )^{2} + 16eq_{2} (c\theta - 1)} }}{{e^{2} (2\theta - 1)}} \hfill \\ p_{0}^{2} = \frac{{8q_{2} + ce\theta - e - \sqrt {64q_{2}^{2} + e^{2} (1 - c + c\theta )^{2} + 16eq_{2} (c\theta - 1)} }}{{e^{2} (2\theta - 1)}} \hfill \\ \end{gathered} \right.$$

Under the conditions of \(0 < c < \frac{1}{1 - \theta }\) and \(p_{0}^{b} < p_{0} < p_{0}^{c}\), \(p_{0}^{b} < p_{0}^{1} < p_{0}^{2} < p_{0}^{c}\) when \({0} < \theta < \frac{1}{2}\). Thereafter, we make \(p_{0}^{1} { = 0}\) and \(p_{0}^{2} = 0\)

$$\left\{ \begin{gathered} q_{2a} = \frac{{e - ce\theta - \sqrt {ce^{2} (c - 2)(2\theta - 1)} }}{8} \hfill \\ q_{2b} = \frac{{e - ce\theta + \sqrt {ce^{2} (c - 2)(2\theta - 1)} }}{8} \hfill \\ \end{gathered} \right.$$

Proof of Theorem 6

According to Eq. (9), the function of \(\Pi_{{M_{2} }}^{CL * } - \Pi_{{M_{2} }}^{CC * }\) becomes a linear equation of \(p_{0}\) \(\Pi_{{M_{2} }}^{{CL^{ * } }} - \Pi_{{M_{2} }}^{{CC^{ * } }} = \frac{{c^{2} - 2c + p_{0} (2e - 16q_{2} - ce)}}{16}\) when \(\theta = \frac{1}{2}\). Subsequently, we obtain \(p_{0}^{*} { = }\frac{{2e - 16q_{2} - ce}}{{16c^{2} - {2}c}}\) and \(q^{*} = \frac{2e - ce}{{16}}\).

Proof of Theorem 7

Similar to the proof of Theorem 5

Proof of Theorem 8

According to Eq. (10), we can first obtain \(\left( {ep_{0} - c} \right)\left( {2c\theta - ep_{0} - c + 2} \right) - p_{0} q_{2} = 0\) and then receive.

$$\left\{ \begin{gathered} p_{0}^{3} = \frac{{ce\theta + e - 8q_{2} + \sqrt {64q_{2}^{2} + e^{2} (1 - c + c\theta )^{2} - 16eq_{2} (c\theta + 1)} }}{{e^{2} }} \hfill \\ p_{0}^{4} = \frac{{ce\theta + e - 8q_{2} - \sqrt {64q_{2}^{2} + e^{2} (1 - c + c\theta )^{2} - 16eq_{2} (c\theta + 1)} }}{{e^{2} }} \hfill \\ \end{gathered} \right.$$

Under the conditions of \(0 < c < {1 \mathord{\left/ {\vphantom {1 {\left( {1 - \theta } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 - \theta } \right)}}\) and \(p_{0}^{d} < p_{0} < p_{0}^{e}\), \(p_{0}^{4} < p_{0}^{3}\), regardless of the value of \(\theta\). Thereafter, we make \(p_{0}^{3} = 0\) and p04 = 0.

$$\left\{ \begin{gathered} q_{2c} = \frac{{e + ce\theta - \sqrt {ce^{2} (2 - c + 2c\theta )} }}{8} \hfill \\ q_{2d} = \frac{{e + ce\theta + \sqrt {ce^{2} (2 - c + 2c\theta )} }}{8} \hfill \\ \end{gathered} \right.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, Y., Li, P. et al. Low-carbon production or not? Co-opetition supply chain manufacturers’ production strategy under carbon cap-and-trade policy. Environ Dev Sustain (2022). https://doi.org/10.1007/s10668-022-02342-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-022-02342-2

Keywords

Navigation