Log in

Impact of fossil fuel transition and population expansion on economic growth

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The existing works in endogenous growth have focused on technology and rarely on population impacts. In contrast, the research on environmental degradation caused by fossil fuel utilization has relied mostly on exogenous technology and population growth. Building upon the previous literature, I propose a dynamic growth model that allows the interaction between an economy and energy consumption of renewable and nonrenewable and the transitional path from one to another. I also allow endogenous population growth, where the population is affected by living standards and industrialization and indirectly natural resources through production, considering the trade-off between nonrenewable energy reserves and renewable resources. By creating a feedback loop from the population to the level of industrialization and GDP in this setup, GDP per capita’s growth rate is lower under endogenous population scenario relative to exogenous population growth. This particular outcome conveys that many projections for future energy use might overestimate our energy use, hence the economic and environmental costs. Firms utilize nonrenewable energy more intensively in a decentralized model since they do not fully internalize the negative externalities that arise from using nonrenewable energy, unlike the social planner approach. Imposing carbon-tax elements on the energy producers’ profit would accelerate clean energy adaptation and sustain the fossil fuel resources for a more extended period while increasing the total welfare by 3%. It would also increase the individuals’ long-term total consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. I will use the discrete model excluding the population in utility function according to Hassler & Krusell (2012).

  2. This cost is not precisely equivalent to the cost of extraction in Stiglitz (1976).

  3. Or we can consider it as fossil fuel energy.

  4. We can also consider the technological progress stochastic in the production process to capture any possible fluctuation later.

  5. Population refers to the labor force in the current setup, not the total population of an economy.

  6. Krutilla & Reuveny (2006) link the population only to renewable resources since their model does not include production process, capital accumulation, and nonrenewable resources.

  7. The degree of industrialization is the capital-labor ratio. Based on Cigno (1981), industrialization and its concomitant urbanization impact birth rates, consistent with the intertemporal utility maximization. It is also compatible with the empirical observation that at low levels of industrialization, population growth tends to move in the same direction as per capita consumption. In contrast, at high levels of industrialization, it tends to move in the opposite direction.

  8. One can think of the continuum of households who are identical in any aspect and characteristics.

  9. To be consistent with the social planner approach, per capita consumption has been considered.

  10. Bio-capacity has risen as one of the world’s dominant measures of human demands on nature. It permits us to compute human pressure on the environment (e.g., if everyone lives the average American lifestyle, we would need at least four more planets). Environmental biocapacity thus focuses on whether the planet can keep up with our growing demands.

  11. Here, it might be a case that drop** in the provision of energy—at the time of running out of fossil fuel—would be offset by cutting the negative externalities from the production process.

  12. One would question that the depicted population is not realistic for the U.S. In Appendix 4, I argue about such issues.

  13. Considering the current US GDP, the magnitude of this difference is around ninety billion dollars per year.

  14. I can increase that percentage, but it makes the model unstable after a few periods.

  15. In which total energy consumption (Eq. 5) and environmental degradation (Eq. 7) are included.

  16. While it seems it might be the first time that the current method of using the decision rules—instead of value function iteration—(by using the initial values and Euler equations) has been applied, it has been discussed in some cases such as DICE user manual, computational and algorithm aspects, by Nordhaus & Sztorc (2013). The main reason that allows me to use the law of motions (for capital, fossil fuel energy and so on) is the exogenous equation for the cost of fossil fuel extraction. This extra equation helps me to construct the matrix of the law of motions, which depend on each other, and solve them all simultaneously.

  17. Alternatively, I can guess the end period for running out of fossil fuel energy, and iterate it back to the initial point. Then, I can do the same process for different ending points to get the highest given utility, and compare the new results to the current ones.

  18. Since the understanding of solving this model might seem a bit confusing, alternatively, I can explain a simple Ramsey scenario (for a discrete time) in which environment, endogenous technology and population, and energy are dropped. Therefore, our Lagrangian gets the following form: \({\mathcal{L}} = E_{0} \mathop \sum \limits_{{C_{t} ,K_{t + 1} }}^{t = 1 \to T} \left[ {\beta^{t} \frac{{\frac{{C_{t} }}{{L_{t} }}^{1 - \sigma } }}{1 - \sigma } + \lambda_{t} \left\{ {Y_{t} - C_{t} - K_{t + 1} + \left( {1 - \delta } \right)K_{t} } \right\}} \right]\). Solving the F.O.C we get: \(C_{t + 1} = C_{t} \left[ {\left( {\beta \left[ {f^{\prime}\left( {K_{t + 1} } \right) + 1 - \delta } \right]} \right)^{{\frac{1}{\sigma }}} \left( {1 + \overline{L}} \right)^{{\frac{\sigma - 1}{\sigma }}} } \right]\). Now, to find the consumption path using my approach, we need the initial conditions such as C0, K0 and L0. Since we cannot assign an initial value to C0, we use the following procedure, just to derive the initial value for consumption, and then use the explained procedure in the main text to drive the growth path. We define a range of possible K1 based on K0 such as 0.5K0 < K1 < 1.5K0. Then, split the range into 100 possible values for K1 and compute the corresponding utility for each of them. The one which maximizes the utility (of the household) would be our “K1.” Then, we can use the budget constraint to derive C0. After that, we can use the formula for intertemporal consumption, to derive next period consumption and physical capital. Alternatively, we can derive the initial values using the steady state. Simply, set Ct+1, and Kt+1 equal to Ct and Kt, and assign the values of Css and Kss as the initial conditions. Having those we are able to derive the pathways for both consumption and physical capital by using the formula for the law of motion for consumption and budget constraint.

References

  • Acemoglu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2012). The environment and directed technical change. American Economic Review, 102(1), 131–166.

    Article  Google Scholar 

  • Aghion, P., & Howitt, P. (1998). Capital accumulation and innovation as complementary factors in long-run growth. Journal of Economic Growth, 3(2), 111–130.

    Article  Google Scholar 

  • Ahmad, M., & Khan, R. E. A. (2019). Does demographic transition with human capital dynamics matter for economic growth? A dynamic panel data approach to GMM. Social Indicators Research, 142(2), 753–772.

    Article  Google Scholar 

  • Ahmad, M., & Zhao, Z. Y. (2018). Causal linkages between energy investment and economic growth: A panel data modelling analysis of China. Energy Sources, Part B: Economics, Planning, and Policy, 13(8), 363–374.

    Article  Google Scholar 

  • Barro, R. J., & Becker, G. S. (1989). Fertility choice in a model of economic growth. Econometrica: Journal of the Econometric Society, 481–501.

  • Becker, G. S., Murphy, K. M., & Tamura, R. (1994). Human capital, fertility, and economic growth. In Human capital: A theoretical and empirical analysis with special reference to education (3rd ed., pp. 323–350). The University of Chicago Press.

  • Becker, G. S. (1973). A theory of marriage: Part I. Journal of Political Economy, 813–846.

  • Cigno, A. (1981). Growth with exhaustible resources and endogenous population. The Review of Economic Studies, 48(2), 281–287.

    Article  Google Scholar 

  • Crichton, R., Farhidi, F., Deeny, C., & Patel, A. (2019). Clearing up the benefits of a fossil fuel sector diversified board: A climate change mitigation strategy. Academy of Management Global Proceedings, 2019, 159.

    Google Scholar 

  • Dasgupta, P., & Mäler, K. G. (2000). Net national product, wealth, and social well-being. Environment and Development Economics, 5(1), 69–93.

    Article  Google Scholar 

  • Dawson, T. P., Rounsevell, M. D., Kluvánková-Oravská, T., Chobotová, V., & Stirling, A. (2010). Dynamic properties of complex adaptive ecosystems: Implications for the sustainability of service provision. Biodiversity and Conservation, 19(10), 2843–2853.

    Article  Google Scholar 

  • Ehrlich, P. R., & Ehrlich, A. H. (1991). The population explosion. Simon and Schuster.

  • Ehrlich, I., & Lui, F. (1997). The problem of population and growth: A review of the literature from Malthus to contemporary models of endogenous population and endogenous growth. Journal of Economic Dynamics and Control, 21(1), 205–242.

    Article  CAS  Google Scholar 

  • Fanti, L., & Manfredi, P. (2003). The Solow's model with endogenous population: A neoclassical growth cycle model. Journal of Economic Development, 28(2), 103–116.

  • Farhidi, F. (2017). Solar impacts on the sustainability of economic growth. Renewable and Sustainable Energy Reviews, 77, 440–450.

    Article  Google Scholar 

  • Farhidi, F. I., & Emadzadeh, M. (2015). Ideas, increasing return to scale, and economic growth: An application for Iran. Journal of Business and Economic Policy, 2(1), 88–97.

    Google Scholar 

  • Farhidi, F., & Madani, K. (2015). A game theoretic analysis of the conflict over Iran's nuclear program. In 2015 IEEE International Conference on Systems, Man, and Cybernetics (pp. 617–622). IEEE.

  • Farhidi, F., & Khiabani, V. (2021). The impact of social norms on cross-state energy regime changes. Energy Policy154, 112257.

  • Farhidi, F. (2018). Essays in Environmental and Energy Economics. GSU Scholarworks.

  • Floden, M. (2001). The effectiveness of government debt and transfers as insurance. Journal of Monetary Economics, 48(1), 81–108.

    Article  Google Scholar 

  • Galor, O., & Weil, D. N. (2000). Population, technology, and growth: From Malthusian stagnation to the demographic transition and beyond. American economic review, 90(4), 806–828.

  • Golosov, M., Hassler, J., Krusell, P., & Tsyvinski, A. (2014). Optimal taxes on fossil fuel in general equilibrium. Econometrica, 82(1), 41–88.

    Article  Google Scholar 

  • Grossman, G. M., & Helpman, E. (1991). Trade, knowledge spillovers, and growth. European Economic Review, 35(2–3), 517–526.

    Article  Google Scholar 

  • Hall, C. A., & Day, J. W. (2009). Revisiting the limits to growth after peak oil in the 1970s a rising world population and the finite resources available to support it were hot topics. Interest faded—but it’s time to take another look. American Scientist, 97(3), 230–237.

    Article  Google Scholar 

  • Hardin, G. (1968). The tragedy of the commons. Science, 162(3859), 1243–1248.

    Article  CAS  Google Scholar 

  • Hartwick, J. M. (1977). Intergenerational equity and the investing of rents from exhaustible resources. American Economic Review, 67(5), 972–974.

    Google Scholar 

  • Hassler, J., & Krusell, P. (2012). Economics and climate change: Integrated assessment in a multi-region world. Journal of the European Economic Association, 10(5), 974–1000.

    Article  Google Scholar 

  • Hassler, J., Krusell, P., & Nycander, J. (2016). Climate policy. Economic Policy, 31(87), 503–558.

    Article  Google Scholar 

  • Jones, C. I. (2002). Sources of US economic growth in a world of ideas. American Economic Review, 92(1), 220–239.

    Article  Google Scholar 

  • Jones, C. I. (1995). R & D-based models of economic growth. Journal of Political Economy 759–784.

  • Kremer, M. (1993). Population growth and technological change: one million BC to 1990. Quarterly Journal of Economics 681–716.

  • Krutilla, K., & Reuveny, R. (2006). The systems dynamics of endogenous population growth in a renewable resource-based growth model. Ecological Economics, 56(2), 256–267.

    Article  Google Scholar 

  • Kümmel, R. (2016). The impact of entropy production and emission mitigation on economic growth. Entropy, 18(3), 75.

    Article  Google Scholar 

  • Kümmel, R., Henn, J., & Lindenberger, D. (2002). Capital, labor, energy and creativity: Modeling innovation diffusion. Structural Change and Economic Dynamics, 13(4), 415–433.

    Article  Google Scholar 

  • Lee, M. (2005). Reviewing tax system and its reform plan for the fuel market in South Korea. Energy Policy, 33(4), 475–482. https://doi.org/10.1016/j.enpol.2003.08.012

  • Meadows et al. (1972). The limits to growth. Signet, ASIN: B01N5JMO52.

  • Lee, R. D. (1988). Induced population growth and induced technological progress: Their interaction in the accelerating stage. Mathematical Population Studies, 1(3), 265–288.

    Article  CAS  Google Scholar 

  • Li, C. Z., & Löfgren, K. G. (2000). Renewable resources and economic sustainability: A dynamic analysis with heterogeneous time preferences. Journal of Environmental Economics and Management, 40(3), 236–250.

    Article  Google Scholar 

  • Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912–919.

    Article  Google Scholar 

  • Nerlove, M., & Raut, L. K. (1997). Growth models with endogenous population: a general framework. Handbook of Population and Family Economics, Vol 1, Part B, 1117–1174.

  • Nordhaus, W. D. (1994). Managing the global commons: The economics of the greenhouse effect. MIT Press.

    Google Scholar 

  • Nordhaus, W. D., & Yang, Z. (1996). A regional dynamic general-equilibrium model of alternative climate-change strategies. American Economic Review, 86(4), 741–765.

    Google Scholar 

  • Nordhaus, W. D., & Boyer, J. (2000). Warming the world: Economic models of global warming. MIT Press.

  • Nordhaus, W. D., & Sztorc, P. (2013). DICE 2013R: Introduction and User’s Manual. Retrieved from http://www.econ.yale.edu/~nordhaus/homepage/documents/DI{\rm CE}_Manual_100413r1.pdf.

  • Nordhaus, W. D. (2008). A question of balance: Economic models of climate change. Yale University Press.

  • Popp, D. (2004). ENTICE: Endogenous technological change in the DICE model of global warming. Journal of Environmental Economics and Management, 48(1), 742–768.

    Article  Google Scholar 

  • Romer, P. M. (1990). Endogenous technological change. Journal of Politic Economy, 98(5), S71–S102.

    Article  Google Scholar 

  • Schwartzman, D. (2008). The limits to entropy: Continuing misuse of thermodynamics in environmental and Marxist theory. Science and Society, 43–62.

  • Solow, R. M. (1956). A contribution to the theory of economic growth. Quarterly Journal of Economics, 65–94.

  • Stern, D. I. (2011). The role of energy in economic growth. Annals of the New York Academy of Sciences, 1219(1), 26–51.

    Article  Google Scholar 

  • Stiglitz, J. (1976). Monopoly and the rate of extraction of exhaustible resources. American Economic Review, 66(4), 655–661.

    Google Scholar 

  • Stiglitz, J. (1974). Growth with exhaustible natural resources: Efficient and optimal growth paths. The Review of Economic Studies 123–137.

  • Stokey, N. L. (1998). Are there limits to growth? International Economic Review 1–31.

  • Tahvonen, O., & Salo, S. (2001). Economic growth and transitions between renewable and nonrenewable resources. European Economic Review, 45, 1379–1398.

    Article  Google Scholar 

  • Turner, G. (2007). A Comparison of the limits to growth with thirty years of reality. CSIRO Sustainable Ecosystems.

  • Wang, Q., & Wang, L. (2020). Renewable energy consumption and economic growth in OECD countries: A nonlinear panel data analysis. Energy207, 118200.

  • Wang, Q., & Wang, L. (2021). The nonlinear effects of population aging, industrial structure, and urbanization on carbon emissions: A panel threshold regression analysis of 137 countries. Journal of Cleaner Production287, 125381.

  • Wang, Q., Li, S., & Pisarenko, Z. (2020). Heterogeneous effects of energy efficiency, oil price, environmental pressure, R&D investment, and policy on renewable energy--evidence from the G20 countries. Energy209, 118322.

Download references

Acknowledgements

I want to thank Drs. Garth Heutel, John Gibson, Spencer Banzhaf, and Glenn Harrison for their crucial comments. I also want to thank the anonymous reviewers for their valuable critics, which polished this manuscript. It must be noted that an abstract version of this paper’s results had been presented at the 2018 AEA conference in Philadelphia and other university associated seminars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faraz Farhidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Data calibration

Since this research’s model is newly introduced and some of the equations are new, I have to structurally estimate all parameters (new and old) using the same model setup. Even though some of the parameters have been carefully estimated before using different structural models, as this model has been extended in various aspects to develop a new one, the results/values might not be consistent and valid for this new composition.

To estimate the parameters of Eq. (7), I used the time series for the US data. The main equation according to the model is: \({\text{ED}}_{t} = 1 - \left( {\frac{{{\text{FE}}_{t} }}{\varphi }} \right)^{\vartheta }\). Therefore, the estimating equation is given by:

$$\log \left( {y_{t} } \right) = \beta_{1} + \beta_{2} \log ({\text{FE}}_{t} ) + \varepsilon_{t}$$
(39)

where \(y_{t} = 1 - {\text{ED}}_{t}\), \(\beta_{2} = \vartheta\) and \(\beta_{1} = - \vartheta \log \left( \varphi \right)\), \(\varepsilon_{t} = \rho \varepsilon_{t - 1} + \varepsilon_{t}\).

The table below shows the results. The error terms are serially correlated. To estimate the above model, I used the generalized least-squares method to estimate the parameters in a linear regression analysis in which the errors are serially correlated. Specifically, the errors are assumed to follow a first-order autoregressive process. Based on the above estimation, we get the below values for the estimated parameters: \(\vartheta =1.151\) and \(\varphi =202{,}864.2\) (Table 3).

Table 3 Estimating the parameters in Eq. (7)

To derive the values of parameters in Eq. (8) [\({\text{AC}}_{t + 1} = {\text{AC}}_{0} {\text{AC}}_{t}^{\theta } \left( {{\text{TL}}_{t} {\text{TY}}_{t} } \right)^{\omega }\)], we can use the following values for \(\theta \,\mathrm{ and }\,\omega\) based on Jones’ (2002) calibration: \(\theta =0.94\) and ω \(=0.015\). However, I changed the model by entering the interaction of financing the technology; therefore, it is advantageous to estimate it as follows (Table 4):

$$\log \left( {{\text{AC}}_{t + 1} } \right) = \log \left( {{\text{AC}}_{0} } \right) + \theta \log \left( {{\text{AC}}_{t} } \right) + \omega \log \left( {{\text{TL}}_{t} *{\text{TY}}_{t} } \right) + \varepsilon_{t}$$
(40)
Table 4 Estimating the parameters in Eq. (8)

Based on the above estimation, we get the below values for the estimated parameters: \(\theta =0.87\) and ω \(=0.02\) which is close to the Jones’ original calibration.

To estimate Eq. (15) parameters, I need to use time series again. The main equation according to the model is: \(L_{t + 1} = L_{t} + L_{0} \left( {\frac{{Y_{t} }}{{L_{t} }}} \right)^{{\varepsilon_{1} }} \left( {\frac{{L_{t} }}{{K_{t} }}} \right)^{{\varepsilon_{2} }}\).

Therefore, the estimating equation is defined as:

$$\log \left( {g_{{L_{t} }} } \right) = \varepsilon_{0} + \varepsilon_{1} \log \left( {\frac{{Y_{t} }}{{L_{t} }}} \right) + \varepsilon_{2} \log \left( {\frac{{L_{t} }}{{K_{t} }}} \right) + \varepsilon_{t}$$
(41)

where \(\varepsilon_{0} = \log \left( {L_{0} } \right)\) and g is the growth rate, rearrange the above equation for L, we get:

$$\log \left( {g_{{L_{t} }} } \right) = \varepsilon_{0} + \varepsilon_{1} \log \left( {Y_{t} } \right) + \varepsilon^{\prime}_{2} \log \left( {K_{t} } \right) + \varepsilon ^{\prime\prime}\log \left( {L_{t} } \right) + \varepsilon_{t}$$
(42)

where \(\varepsilon^{\prime}_{2} = - \varepsilon_{2}\) and \(\varepsilon^{\prime\prime} = \varepsilon_{2} - \varepsilon_{1}\) (Table 5).

Table 5 Estimating the parameters in Eq. (15)

Based on the above regression, the estimated parameters are: \({\varepsilon }_{1}=1.72\), \({\varepsilon }_{2}=2.17\).

Appendix 2: Explaining the used method to solve the model

To solve the model, first we can simplify the constraints by substituting Eq. (6) into (5), and then substitute back the new equation (total energy production) and (8) (environmental degradation) into the production function (Eq. 4), yielding Eq. (43) (section “Solving the social planner's F.O.C [exogenous population]” in Appendix). Then, we substitute the modified production function and the price for fossil fuel energy (Eq. 9) into the income allocation function (Eq. 3) to get Eq. (44). Then, substitute Eqs. (12) and (13) into (43) and (8), respectively, for PL and TL, to get the two constraints (Eqs. 45, 46) for the Lagrangian. Now we can establish the Lagrangian, in which households are maximizing their utility over infinite time, for the base model in which the population growth is exogenous Eq. (16).

Considering the three equations for income allocation (Eq. 3), production (Eq. 4),Footnote 15 and technological production for renewable energy (Eq. 8), and the Euler equations (Eqs. 52, 53, 54, 55, 56), derived from the F.O.Cs, I can solve for this path using the actual values of the variables for the initial year (t = 0)—which are shown in Table 6—and then update the variables based on the above equations. Therefore, I directly use the law of motions (by forward iteration)Footnote 16 to obtain next period values based on the previously driven values. Thus, there is an implicit uncertainty about the ending period of fossil fuel energy at the starting point.Footnote 17 To select these values, I use 2018 as a reference year, extracted the values for the U.S., and then normalize it by million. The amount of clean energy (including nuclear) is set to be 22% of the total energy consumption.

Table 6 Initial values of the variables in the model

The only issue we have to derive the growth path, using the law of motions is to define the value of C0 which is demonstrated in the footnote.Footnote 18 Having the above values as initial conditions (and defining C0 as it has been explained), we can compute the level of production from Eq. (4), the next period required technology for the clean energy from Eq. (8), and the cost of extracting the fossil fuel (CEX) from Eq. (9). Now, utilizing the budget constraint (Eq. 3), we can calculate the next period physical capital (Kt+1), knowing all values for the current (t = 0) state. Now, we can update the labor force using Eq. (14) for the exogenous case. The next period technological progress in the production process (A) can be achieved from Eq. (10). Therefore, we can use Eq. (54) to get the required fossil fuel energy (FE) for the next period. At this time, we can use Eq. (52) (intertemporal consumption decision) to compute the level of consumption for the next period as well. Now, the only unknown variable for the next period would be the required resources for financing the clean energy technology (TY). Using the last Euler Eq. (55), we can calculate the amount of this element. Repeating the same process, we can update all values for each period moving forward.

It must be noted that the approach I develop in this study is not a standard computational method. A social planner is not predicting the growth path. The planner maximizes the utility each period due to the existing, present resources. Therefore, the backward induction method has not been used since the exact time of depletion of natural resources is unknown. This form of set up is the real uncertainty of the model, implicitly implemented in the solving process. However, the issue of the discoveries uncertainty or the exact time of running out of fossil fuel, in the starting point, has not been studied explicitly within this framework since the current setup is deterministic, not stochastic. It is also worth mentioning that the social planner does not account for the nonrenewable resources constraint in the optimization problem in the beginning but tries to deal with it while there are not enough resources left to utilize. The main reason I use a non-conventional method to solve this model is that the ideology of this research is built on. There is no end time for resources (fossil fuel can be replaced by renewable energy); thus, the values of the transversality conditions for both physical capital and investment on renewable energy are unknown. The proposed approach does not sound quite appealing, but it saves the day.

Solving the first-order conditions, I can follow the same process as it has been done for the previous case to derive the Euler equations. Deriving the first-order conditions in the endogenous model is shown section “Solving the social planner’s F.O.C [endogenous population]” in Appendix. Having the Euler equations beside the constraints, I am able to follow the same process in the exogenous population scenario to update the next period values with some minor adjustments. First, I am going to use Eq. (15) instead of 14 to update the next year’s total labor force. And second, I need to solve (Eqs. 67, 69, 70) simultaneously to get the next period values for C, FE, and TY.

Appendix 3: Solving the F.O.Cs for both social planner and market-based approaches

3.1 Solving the social planner's F.O.C [exogenous population]

$$Y_{t} = \left( {1 - \frac{{{\text{FE}}_{t} }}{\varphi }^{\vartheta } } \right)\left[ {A_{t} K_{t}^{\alpha } {\text{PL}}_{t}^{{1 - \alpha - \gamma }} \left[ {\left( {{\text{AC}}_{t} {\text{CE}}} \right)^{\rho } + {\text{FE}}_{t}^{\rho } } \right]^{{\frac{\gamma }{\rho }}} } \right]$$
(43)
$$\begin{aligned} & \left( {1 - \frac{{{\text{FE}}_{t} }}{\varphi }^{\vartheta } } \right)\left( {A_{t} K_{t}^{\alpha } {\text{PL}}_{t}^{{1 - \alpha - \gamma }} } \right)\left( {\left( {{\text{AC}}_{t} {\text{CE}}} \right)^{\rho } + {\text{FE}}_{t}^{\rho } } \right)^{{\frac{\gamma }{\rho }}} \\ & \quad = C_{t} + K_{{t + 1}} - \left( {1 - \delta } \right)K_{t} + \left( {P_{0} + P_{1} \left( {\frac{{\mathop \sum \nolimits_{{i = 1}}^{t} {\text{FE}}_{i} }}{{\overline{{{\text{FE}}}} }}} \right)^{{P_{2} }} + P_{3} \left( {\frac{{{\text{FE}}_{t} }}{{\overline{{{\text{CTE}}}} }}} \right)^{{P_{4} }} } \right){\text{FE}}_{t} + {\text{TY}}_{t} \\ \end{aligned}$$
(44)
$$\begin{aligned} & \left( {1 - \frac{{{\text{FE}}_{t} }}{\varphi }^{\vartheta } } \right)\left( {A_{t} K_{t}^{\alpha } \left( {l_{\rm PL} L_{t} } \right)^{1 - \alpha - \gamma } } \right)\left( {\left( {{\text{AC}}_{t} {\text{CE}}} \right)^{\rho } + {\text{FE}}_{t}^{\rho } } \right)^{{\frac{\gamma }{\rho }}} = C_{t} + K_{t + 1} - \left( {1 - \delta } \right)K_{t} \\ & \quad + \left( {P_{0} + P_{1} \left( {\frac{{\mathop \sum \nolimits_{i = 1}^{t} {\text{FE}}_{i} }}{{\overline{{{\text{FE}}}} }}} \right)^{{P_{2} }} + P_{3} \left( {\frac{{{\text{FE}}_{t} }}{{\overline{{{\text{CTE}}}} }}} \right)^{{P_{4} }} } \right){\text{FE}}_{t} + {\text{TY}}_{t} \\ \end{aligned}$$
(45)
$${\text{AC}}_{t + 1} = {\text{AC}}_{0} {\text{AC}}_{t}^{\theta } \left( {l_{{{\text{PL}}}} L_{t} {\text{TY}}_{t} } \right)^{\omega }$$
(46)

Solving the Euler equations for the social planner when the population is exogenous.

First-order conditions are:

$$\left\{ {C_{t} } \right\}: \beta^{t} \frac{{C_{t}^{ - \sigma } }}{{L_{t}^{1 - \sigma } }} = \lambda_{1t}$$
(47)
$$\left\{ {K_{t + 1} } \right\}: \lambda_{1t + 1} \left\{ {\alpha \left( {1 - \frac{{{\text{FE}}_{t + 1} }}{\varphi }^{\vartheta } } \right)\left( {A_{t + 1} K_{t + 1}^{\alpha - 1} \left( {l_{{{\text{PL}}}} L_{t + 1} } \right)^{1 - \alpha - \gamma } } \right)\left( {\left( {{\text{AC}}_{t + 1} {\text{CE}}} \right)^{\rho } + {\text{FE}}_{t + 1}^{\rho } } \right)^{{\frac{\gamma }{\rho }}} + 1 - \delta } \right\} = \lambda_{1t}$$
(48)
$$\begin{aligned} & \left\{ {{\rm FE}_{t} } \right\}: \left( {1 - \frac{{{\rm FE}_{t} }}{\varphi }^{\vartheta } } \right)\left( {A_{t} K_{t}^{\alpha } \left( {l_{\rm PL} L_{t} } \right)^{1 - \alpha - \gamma } } \right)\gamma {\rm FE}_{t}^{\rho - 1} \left( {\left( {{\rm AC}_{t} {\rm CE}} \right)^{\rho } + {\rm FE}_{t}^{\rho } } \right)^{{\frac{\gamma}{\rho} - 1}} \\ & \quad - \frac{\vartheta }{\varphi }\frac{{{\rm FE}_{t} }}{\varphi }^{\vartheta - 1} \left( {A_{t} K_{t}^{\alpha } \left( {l_{\rm PL} L_{t} } \right)^{1 - \alpha - \gamma } } \right)\left( {\left( {{\rm AC}_{t} {\rm CE}} \right)^{\rho } + {\rm FE}_{t}^{\rho } } \right)^{{\frac{\gamma}{\rho}}} \\ & \quad - \left( {P_{0} + P_{1} \left( {\frac{{\mathop \sum \nolimits_{i = 1}^{t} {\rm FE}_{i} }}{{\overline{{\rm FE}} }}} \right)^{{P_{2} }} + P_{3} \left( {\frac{{{\rm FE}_{t} }}{{\overline{{\rm CTE}} }}} \right)^{{P_{4} }} + \left( {\frac{{P_{1} P_{2} }}{{\overline{{\rm FE}} }}\left( {\frac{{\mathop \sum \nolimits_{i = 1}^{t} {\rm FE}_{i} }}{{\overline{{\rm FE}} }}} \right)^{{P_{2} - 1}} + \frac{{P_{3} P_{4} }}{{\overline{{\rm CTE}} }}\left( {\frac{{{\rm FE}_{t} }}{{\overline{{\rm CTE}} }}} \right)^{{P_{4} - 1}} } \right){\rm FE}_{t} } \right) = 0 \\ \end{aligned}$$
(49)
$$\begin{aligned} & \left\{ {{\rm AC}_{t + 1} } \right\}:\lambda_{2t + 1} \left\{ {\theta {\rm AC}_{0} {\rm AC}_{t + 1}^{\theta - 1} \left( {l_{\rm TL} L_{t + 1} {\rm TY}_{t + 1} } \right)^{\omega } } \right\} \\ & \quad + \lambda_{1t + 1} \left\{ {\left( {1 - \frac{{{\rm FE}_{t + 1} }}{\varphi }^{\vartheta } } \right)A_{t + 1} K_{t + 1}^{\alpha } \left( {l_{\rm PL} L_{t + 1} } \right)^{1 - \alpha - \gamma } \gamma {\rm CE}^{\rho } {\rm AC}_{t + 1}^{\rho - 1} \left( {\left( {{\rm AC}_{t + 1} {\rm CE}} \right)^{\rho } + {\rm FE}_{t + 1}^{\rho } } \right)^{{\frac{\gamma}{\rho} - 1}} } \right\} = \lambda_{2t} \\ \end{aligned}$$
(50)
$$\left\{ {{\rm TY}_{t} } \right\}: \lambda_{1t} = \lambda_{2t} \left[ {\omega {\rm AC}_{0} {\rm AC}_{t}^{\theta } \left( {l_{\rm TL} L_{t} } \right)^{\omega } {\rm TY}_{t}^{\omega - 1} } \right]$$
(51)

Substituting Eqs. (47) and (49) (and the updated forms of them) in the above F.O.Cs, we get the following Euler equations:

$$\beta \frac{{C_{t + 1}^{ - \sigma } }}{{L_{t + 1}^{1 - \sigma } }}\left\{ {\alpha \left( {1 - \frac{{{\rm FE}_{t + 1} }}{\varphi }^{\vartheta } } \right)\left( {A_{t + 1} K_{t + 1}^{\alpha - 1} \left( {l_{\rm PL} L_{t + 1} } \right)^{1 - \alpha - \gamma } } \right)\left( {\left( {{\rm AC}_{t + 1} {\rm CE}} \right)^{\rho } + {\rm FE}_{t + 1}^{\rho } } \right)^{{\frac{\gamma}{\rho}}} + 1 - \delta } \right\} = \frac{{C_{t}^{ - \sigma } }}{{L_{t}^{1 - \sigma } }}$$
(52)

And the above equation, when there is no fossil fuel energy left to use, is:

$$\beta \frac{{C_{t + 1}^{ - \sigma } }}{{L_{t + 1}^{1 - \sigma } }}\left\{ {\alpha \left( {A_{t + 1} K_{t + 1}^{\alpha - 1} \left( {l_{\rm PL} L_{t + 1} } \right)^{1 - \alpha - \gamma } } \right)\left( {{\rm AC}_{t + 1} {\rm CE}} \right)^{\gamma } + 1 - \delta } \right\} = \frac{{C_{t}^{ - \sigma } }}{{L_{t}^{1 - \sigma } }}$$
(53)
$$\begin{aligned} & \left( {1 - \frac{{{\text{FE}}_{{t + 1}} }}{\varphi }^{\vartheta } } \right)\left( {A_{{t + 1}} K_{{t + 1}}^{\alpha } \left( {l_{{{\text{PL}}}} L_{{t + 1}} } \right)^{{1 - \alpha - \gamma }} } \right)\gamma {\text{FE}}_{{t + 1}}^{{\rho - 1}} \left( {\left( {{\text{AC}}_{{t + 1}} {\text{CE}}} \right)^{\rho } + {\text{FE}}_{{t + 1}}^{\rho } } \right)^{{\frac{\gamma }{\rho } - 1}} \\ & \quad = \frac{\vartheta }{\varphi }\frac{{{\text{FE}}_{{t + 1}} }}{\varphi }^{{\vartheta - 1}} \left( {A_{{t + 1}} K_{{t + 1}}^{\alpha } \left( {l_{{{\text{PL}}}} L_{{t + 1}} } \right)^{{1 - \alpha - \gamma }} } \right)\left( {\left( {{\text{AC}}_{{t + 1}} {\text{CE}}} \right)^{\rho } + {\text{FE}}_{{t + 1}}^{\rho } } \right)^{{\frac{\gamma }{\rho }}} \\ & \quad \quad + P_{0} + P_{1} \left( {\frac{{\mathop \sum \nolimits_{{i = 1}}^{{t + 1}} {\text{FE}}_{i} }}{{\overline{{{\text{FE}}}} }}} \right)^{{P_{2} }} + P_{3} \left( {\frac{{{\text{FE}}_{t} }}{{\overline{{{\text{CTE}}}} }}} \right)^{{P_{4} }} \\ & \quad \quad + \left( {\frac{{P_{1} P_{2} }}{{\overline{{{\text{FE}}}} }}\left( {\frac{{\mathop \sum \nolimits_{{i = 1}}^{{t + 1}} {\text{FE}}_{i} }}{{\overline{{{\text{FE}}}} }}} \right)^{{P_{2} - 1}} + \frac{{P_{3} P_{4} }}{{\overline{{{\text{CTE}}}} }}\left( {\frac{{{\text{FE}}_{{t + 1}} }}{{\overline{{{\text{CTE}}}} }}} \right)^{{P_{4} - 1}} } \right){\text{FE}}_{{t + 1}} \\ \end{aligned}$$
(54)
$$\begin{aligned} & \frac{{{\rm B}\frac{{C_{t + 1}^{ - \sigma } }}{{L_{t + 1}^{1 - \sigma } }}}}{{\omega {\rm AC}_{0} {\rm AC}_{t + 1}^{\theta } \left( {l_{\rm TL} L_{t + 1} } \right)^{\omega } {\rm TY}_{t + 1}^{\omega - 1} }}\left\{ {\theta {\rm AC}_{0} {\rm AC}_{t + 1}^{\theta - 1} \left( {l_{\rm TL} L_{t + 1} {\rm TY}_{t + 1} } \right)^{\omega } } \right\} \\ & \quad + \beta \frac{{C_{t + 1}^{ - \sigma } }}{{L_{t + 1}^{1 - \sigma } }}\left\{ {\left( {1 - \frac{{{\rm FE}_{t + 1} }}{\varphi }^{\vartheta } } \right)A_{t + 1} K_{t + 1}^{\alpha } \left( {l_{\rm PL} L_{t + 1} } \right)^{1 - \alpha - \gamma } \gamma {\rm CE}^{\rho } {\rm AC}_{t + 1}^{\rho - 1} \left( {\left( {{\rm AC}_{t + 1} {\rm CE}} \right)^{\rho } + {\rm FE}_{t + 1}^{\rho } } \right)^{{\frac{\gamma}{\rho} - 1}} } \right\} \\ & \quad \quad = \frac{{\frac{{C_{t}^{ - \sigma } }}{{L_{t}^{1 - \sigma } }}}}{{\omega {\rm AC}_{0} {\rm AC}_{t}^{\theta } \left( {l_{\rm TL} L_{t} } \right)^{\omega } {\rm TY}_{t}^{\omega - 1} }} \\ \end{aligned}$$
(55)

And the above equation, when no fossil fuel energy remains, is:

$$\begin{aligned} & \frac{{\beta \frac{{C_{t + 1}^{ - \sigma } }}{{L_{t + 1}^{1 - \sigma } }}}}{{\omega {\rm AC}_{0} {\rm AC}_{t + 1}^{\theta } \left( {l_{\rm TL} L_{t + 1} } \right)^{\omega } {\rm TY}_{t + 1}^{\omega - 1} }}\left\{ {\theta {\rm AC}_{0} {\rm AC}_{t + 1}^{\theta - 1} \left( {l_{\rm TL} L_{t + 1} {\rm TY}_{t + 1} } \right)^{\omega } } \right\} \\ & \quad + \beta \frac{{C_{t + 1}^{ - \sigma } }}{{L_{t + 1}^{1 - \sigma } }}\left\{ {A_{t + 1} K_{t + 1}^{\alpha } \left( {l_{\rm PL} L_{t + 1} } \right)^{1 - \alpha - \gamma } \gamma {\rm CE}\left( {{\rm AC}_{t + 1} {\rm CE}} \right)^{\gamma - 1} } \right\} = \frac{{\frac{{C_{t}^{ - \sigma } }}{{L_{t}^{1 - \sigma } }}}}{{\omega {\rm AC}_{0} {\rm AC}_{t}^{\theta } \left( {l_{\rm TL} L_{t} } \right)^{\omega } {\rm TY}_{t}^{\omega - 1} }} \\ \end{aligned}$$
(56)

3.2 Solving the social planner’s F.O.C [endogenous population]

By solving the Euler equations for the social planner when the population is endogenous, the first-order conditions are:

$$\left\{ {C_{t} } \right\}: \beta^{t} \frac{{C_{t}^{ - \sigma } }}{{L_{t}^{1 - \sigma } }} = \lambda_{1t}$$
(57)
$$\begin{aligned} & \left\{ {L_{t + 1} } \right\}: - \beta^{t + 1} C_{t + 1}^{1 - \sigma } L_{t + 1}^{\sigma - 2} + \lambda_{1t + 1} \left\{ {\left( {1 - \alpha - \gamma } \right)\left( {1 - \frac{{{\rm FE}_{t + 1} }}{\varphi }^{\vartheta } } \right)\left( {A_{t + 1} K_{t + 1}^{\alpha } \left( {l_{\rm PL} } \right)^{1 - \alpha - \gamma } \left( {L_{t + 1} } \right)^{ - \alpha - \gamma } } \right)\left( {\left( {{\rm AC}_{t + 1} {\rm CE}} \right)^{\rho } + {\rm FE}_{t + 1}^{\rho } } \right)^{{\frac{\gamma}{\rho}}} } \right\} \\ & \quad + \lambda_{2t + 1} \left\{ {\omega {\rm AC}_{0} {\rm AC}_{t + 1}^{\theta } \left( {l_{\rm TL} {\rm TY}_{t + 1} } \right)^{\omega } L_{t + 1}^{\omega - 1} } \right\} \\ & \quad + \lambda_{3t + 1} \left\{ {L_{0} \left( {\varepsilon_{2} - \alpha \varepsilon_{1} - \gamma \varepsilon_{1} } \right)\left( {1 - \frac{{{\rm FE}_{t + 1} }}{\varphi }^{\vartheta } } \right)^{{\varepsilon_{1} }} A_{t + 1}^{{\varepsilon_{1} }} K_{t + 1}^{{\alpha \varepsilon_{1} - \varepsilon_{2} }} l_{\rm PL}^{{\varepsilon_{1} - \alpha \varepsilon_{1} - \varepsilon_{1} \gamma }} L_{t + 1}^{{\varepsilon_{2} - \alpha \varepsilon_{1} - \gamma \varepsilon_{1} - 1}} \left( {\left( {{\rm AC}_{t + 1} {\rm CE}} \right)^{\rho } + {\rm FE}_{t + 1}^{\rho } } \right)^{{{\raise0.7ex\hbox{${\gamma \varepsilon_{1} }$} \!\mathord{\left/ {\vphantom {{\gamma \varepsilon_{1} } \rho }}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$\rho $}}}} + 1} \right\} = \lambda_{3t} \\ \end{aligned}$$
(58)
$$\begin{aligned} & \left\{ {K_{t + 1} } \right\}: \lambda_{1t + 1} \left\{ {\left( {1 - \frac{{{\rm FE}_{t + 1} }}{\varphi }^{\vartheta } } \right)\alpha \left( {A_{t + 1} K_{t + 1}^{\alpha - 1} \left( {l_{\rm PL} L_{t + 1} } \right)^{1 - \alpha - \gamma } } \right)\left( {\left( {{\rm AC}_{t + 1} {\rm CE}} \right)^{\rho } + {\rm FE}_{t + 1}^{\rho } } \right)^{{\frac{\gamma}{\rho}}} + 1 - \delta } \right\} \\ & \quad + \lambda_{3t + 1} \{ \left( {\alpha \varepsilon_{1} - \varepsilon_{2} } \right)L_{0} \left( {1 - \frac{{{\rm FE}_{t + 1} }}{\varphi }^{\vartheta } } \right)^{{\varepsilon_{1} }} A_{t + 1}^{{\varepsilon_{1} }} K_{t + 1}^{{\alpha \varepsilon_{1} - \varepsilon_{2} - 1}} l_{\rm PL}^{{\varepsilon_{1} - \alpha \varepsilon_{1} - \varepsilon_{1} \gamma }} L_{t + 1}^{{\varepsilon_{2} - \alpha \varepsilon_{1} - \gamma \varepsilon_{1} }} \left( {\left( {{\rm AC}_{t + 1} {\rm CE}} \right)^{\rho } + {\rm FE}_{t + 1}^{\rho } } \right)^{{{\raise0.7ex\hbox{${\gamma \varepsilon_{1} }$} \!\mathord{\left/ {\vphantom {{\gamma \varepsilon_{1} } \rho }}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$\rho $}}}} = \lambda_{1t} \\ \end{aligned}$$
(59)
$$\left\{{\mathrm{FE}}_{t}\right\}: {\lambda }_{1{t}}\left\{\left(1-{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta }\right)\left({A}_{t}{{K}}_{t}^{\alpha }{\left({I}_{\mathrm{PL}}{L}_{t}\right)}^{1-\alpha -\gamma }\right)\gamma {\mathrm{FE}}_{t}^{\rho -1}{\left({\left({\mathrm{AC}}_{t}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{t}^{\rho }\right)}^{\frac{\gamma }{\rho }-1}- \frac{\vartheta }{\varphi }{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta -1}\left({A}_{t}{{K}}_{t}^{\alpha }{\left({I}_{\mathrm{PL}}{L}_{t}\right)}^{1-\alpha -\gamma }\right){\left({\left({\mathrm{AC}}_{t}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{t}^{\rho }\right)}^{\frac{\gamma }{\rho }}-\left({\mathrm{P}}_{0}+{\mathrm{P}}_{1}{\left(\sum_{\mathrm{i}=1}^{t}\frac{{\mathrm{FE}}_{\mathrm{i}}}{\overline{\mathrm{FE}} }\right)}^{{\mathrm{P}}_{2}}+{\mathrm{P}}_{3}{\left(\frac{{\mathrm{FE}}_{t}}{\overline{\mathrm{CTE}} }\right)}^{{\mathrm{P}}_{4}}+\left(\frac{{\mathrm{P}}_{1}{\mathrm{P}}_{2}}{\overline{\mathrm{FE}} }{\left(\sum_{\mathrm{i}=1}^{t}\frac{{\mathrm{FE}}_{\mathrm{i}}}{\overline{\mathrm{FE}} }\right)}^{{\mathrm{P}}_{2}-1}+\frac{{\mathrm{P}}_{3}{\mathrm{P}}_{4}}{\overline{\mathrm{CTE}} }{\left(\frac{{\mathrm{FE}}_{t}}{\overline{\mathrm{CTE}} }\right)}^{{\mathrm{P}}_{4}-1}\right){\mathrm{FE}}_{t}\right)\right\}+ {\lambda }_{3{t}}\left\{{L}_{0}{\left(1-{ \frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}}{A}_{t}^{{\varepsilon }_{1}}{{K}}_{t}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{t}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}\gamma {\varepsilon }_{1}{\mathrm{FE}}_{t}^{\rho -1}{\left({\left({\mathrm{AC}}_{t}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{t}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }-1}- {L}_{0}\frac{\vartheta {\varepsilon }_{1}}{\varphi }{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta -1}{\left(1-{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}-1}{A}_{t}^{{\varepsilon }_{1}}{{K}}_{t}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{t}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}+1}{\left({\left({\mathrm{AC}}_{t}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{t}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }}\right\}=0$$
(60)
$$\begin{aligned} \left\{ {{\rm AC}_{t + 1} } \right\} & :\lambda_{1t + 1} \left\{ {\left( {1 - \frac{{{\rm FE}_{t + 1} }}{\varphi }^{\vartheta } } \right)A_{t + 1} K_{t + 1}^{\alpha } \left( {l_{\rm PL} L_{t + 1} } \right)^{1 - \alpha - \gamma } \gamma {\rm CE}^{\rho } {\rm AC}_{t + 1}^{\rho - 1} \left( {\left( {{\rm AC}_{t + 1} {\rm CE}} \right)^{\rho } + {\rm FE}_{t + 1}^{\rho } } \right)^{{\frac{\gamma }{\rho } - 1}} } \right\} \\ & \quad + \lambda_{2t + 1} \left\{ {\theta {\rm AC}_{0} {\rm AC}_{t + 1}^{\theta - 1} \left( {l_{\rm TL} L_{t + 1} {\rm TY}_{t + 1} } \right)^{\omega } } \right\} \\ & \quad + \lambda_{3t + 1} \left\{ {\gamma \varepsilon_{1} {\rm CE}^{\rho } {\rm AC}_{t + 1}^{\rho - 1} L_{0} \left( {1 - \frac{{{\rm FE}_{t + 1} }}{\varphi }^{\vartheta } } \right)^{{\varepsilon_{1} }} A_{t + 1}^{{\varepsilon_{1} }} K_{t + 1}^{{\alpha \varepsilon_{1} - \varepsilon_{2} }} l_{\rm PL}^{{\varepsilon_{1} - \alpha \varepsilon_{1} - \varepsilon_{1} \gamma }} L_{t + 1}^{{\varepsilon_{2} - \alpha \varepsilon_{1} - \gamma \varepsilon_{1} }} \left( {\left( {{\rm AC}_{t + 1} {\rm CE}} \right)^{\rho } + {\rm FE}_{t + 1}^{\rho } } \right)^{{\frac{{\gamma \varepsilon_{1} }}{\rho } - 1}} } \right\} = \lambda_{2t} \\ \end{aligned}$$
(61)
$$\left\{ {{\rm TY}_{t} } \right\}: \lambda_{1t} = \lambda_{2t} \left[ {\omega {\rm AC}_{0} {\rm AC}_{t}^{\theta } \left( {l_{\rm TL} L_{t} } \right)^{\omega } {\rm TY}_{t}^{\omega - 1} } \right]$$
(62)

Substituting Eqs. (57) and (60) (and the updated forms of them) in the above F.O.Cs, we get the following equations:

$$-{\beta }^{{t}+1}{C}_{{t}+1}^{1-\sigma }{L}_{{t}+1}^{\sigma -2}+ {\beta }^{{t}+1}\frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}\left\{\left(1-\alpha -\gamma \right)\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)\left({A}_{{t}+1}{{K}}_{{t}+1}^{\alpha }{\left({I}_{\mathrm{PL}}\right)}^{1-\alpha -\gamma }{\left({L}_{{t}+1}\right)}^{-\alpha -\gamma }\right){\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma }{\rho }}\right\}+\frac{{\beta }^{{t}+1}\frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}}{\omega {\mathrm{AC}}_{0}{\mathrm{AC}}_{{t}+1}^{\theta }{\left({I}_{\mathrm{TL}}{L}_{{t}+1}\right)}^{\omega }{\mathrm{TY}}_{{t}+1}^{\omega -1}}\left\{\omega {\mathrm{AC}}_{0}{\mathrm{AC}}_{{t}+1}^{\theta }{\left({I}_{\mathrm{TL}}{\mathrm{TY}}_{{t}+1}\right)}^{\omega }{L}_{{t}+1}^{\omega -1}\right\}+{\lambda }_{3{t}+1}\left\{{L}_{0}\left({\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}\right){\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}}{A}_{{t}+1}^{{\varepsilon }_{1}}{{K}}_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}-1}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }}+1\right\}={\lambda }_{3{t}}$$
(63)
$${\beta }^{{t}+1}\frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}\left\{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)\alpha \left({A}_{{t}+1}{{K}}_{{t}+1}^{\alpha -1}{\left({I}_{\mathrm{PL}}{L}_{{t}+1}\right)}^{1-\alpha -\gamma }\right){\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma }{\rho }}+1-\updelta \right\}+{\lambda }_{3{t}+1}\{(\alpha {\varepsilon }_{1}-{\varepsilon }_{2}){L}_{0}{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}}{A}_{{t}+1}^{{\varepsilon }_{1}}{{K}}_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}-1}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }}={\beta }^{t}\frac{{C}_{t}^{-\sigma }}{{L}_{t}^{1-\sigma }}$$
(64)
$${\beta }^{t}\frac{{C}_{t}^{-\sigma }}{{L}_{t}^{1-\sigma }}\left\{\left(1-{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta }\right)\left({A}_{t}{{K}}_{t}^{\alpha }{\left({I}_{\mathrm{PL}}{L}_{t}\right)}^{1-\alpha -\gamma }\right)\gamma {\mathrm{FE}}_{t}^{\rho -1}{\left({\left({\mathrm{AC}}_{t}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{t}^{\rho }\right)}^{\frac{\gamma }{\rho }-1}-\frac{\vartheta }{\varphi }{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta -1}\left({A}_{t}{{K}}_{t}^{\alpha }{\left({I}_{\mathrm{PL}}{L}_{t}\right)}^{1-\alpha -\gamma }\right){\left({\left({\mathrm{AC}}_{t}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{t}^{\rho }\right)}^{\frac{\gamma }{\rho }}-\left({\mathrm{P}}_{0}+{\mathrm{P}}_{1}{\left(\sum_{\mathrm{i}=1}^{t}\frac{{\mathrm{FE}}_{\mathrm{i}}}{\overline{\mathrm{FE}} }\right)}^{{\mathrm{P}}_{2}}+{\mathrm{P}}_{3}{\left(\frac{{\mathrm{FE}}_{t}}{\overline{\mathrm{CTE}} }\right)}^{{\mathrm{P}}_{4}}+(\frac{{\mathrm{P}}_{1}{\mathrm{P}}_{2}}{\overline{\mathrm{FE}} }{\left(\sum_{\mathrm{i}=1}^{t}\frac{{\mathrm{FE}}_{\mathrm{i}}}{\overline{\mathrm{FE}} }\right)}^{{\mathrm{P}}_{2}-1}+\frac{{\mathrm{P}}_{3}{\mathrm{P}}_{4}}{\overline{\mathrm{CTE}} }{\left(\frac{{\mathrm{FE}}_{t}}{\overline{\mathrm{CTE}} }\right)}^{{\mathrm{P}}_{4}-1}){\mathrm{FE}}_{t}{\varepsilon }_{1}\right)\right\}+ {\lambda }_{3{t}}\{{L}_{0}{\left(1-{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}}{A}_{t}^{{\varepsilon }_{1}}{{K}}_{t}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{t}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}\gamma {\varepsilon }_{1}{\mathrm{FE}}_{t}^{\rho -1}{\left({\left({\mathrm{AC}}_{t}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{t}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }-1}-{L}_{0}\frac{\vartheta {\varepsilon }_{1}}{\varphi }{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta -1}{\left(1-{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}-1}{A}_{t}^{{\varepsilon }_{1}}{{K}}_{t}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{t}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}{\left({\left({\mathrm{AC}}_{t}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{t}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }}\}=0$$
(65)
$${\beta }^{{t}+1}\frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}\left\{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right){A}_{{t}+1}{{K}}_{{t}+1}^{\alpha }{\left({I}_{\mathrm{PL}}{L}_{{t}+1}\right)}^{1-\alpha -\gamma }\gamma {\mathrm{CE}}^{\rho }{\mathrm{AC}}_{{t}+1}^{\rho -1}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma }{\rho }-1}\right\}+\frac{{\beta }^{{t}+1}\frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}}{\omega {\mathrm{AC}}_{0}{\mathrm{AC}}_{{t}+1}^{\theta }{\left({I}_{\mathrm{TL}}{L}_{{t}+1}\right)}^{\omega }{\mathrm{TY}}_{{t}+1}^{\omega -1}}\left\{\theta {\mathrm{AC}}_{0}{\mathrm{AC}}_{{t}+1}^{\theta -1}{\left({I}_{\mathrm{TL}}{L}_{{t}+1}{\mathrm{TY}}_{{t}+1}\right)}^{\omega }\right\}+{\lambda }_{3{t}+1}\{\gamma {\varepsilon }_{1}{\mathrm{CE}}^{\rho }{\mathrm{AC}}_{{t}+1}^{\rho -1}{L}_{0}{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}}{A}_{{t}+1}^{{\varepsilon }_{1}}{{K}}_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }-1}\}=\frac{{\beta }^{t}\frac{{C}_{t}^{-\sigma }}{{L}_{t}^{1-\sigma }}}{\omega {\mathrm{AC}}_{0}{\mathrm{AC}}_{t}^{\theta }{\left({I}_{\mathrm{TL}}{L}_{t}\right)}^{\omega }{\mathrm{TY}}_{t}^{\omega -1}}$$
(66)

Now, we rearrange Eq. (65) for \({\lambda }_{3t}\), update it to get \({\lambda }_{3t+1}\), and replace it back into Eqs. (63, 64, 66), having our three Euler equations as follows:

$$-\beta C_{{t}+1}^{1-\sigma }L_{{t}+1}^{\sigma -2}+ \beta \frac{C_{{t}+1}^{-\sigma }}{L_{{t}+1}^{1-\sigma }}\left\{\left(1-\alpha -\gamma \right)\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)\left(A_{{t}+1}K_{{t}+1}^{\alpha }{\left({{l}}_{\mathrm{PL}}\right)}^{1-\alpha -\gamma }{\left(L_{{t}+1}\right)}^{-\alpha -\gamma }\right){\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma }{\rho }}\right\}+\frac{\beta \frac{C_{{t}+1}^{-\sigma }}{L_{{t}+1}^{1-\sigma }}}{\omega {\mathrm{AC}}_{0}{\mathrm{AC}}_{{t}+1}^{\theta }{\left({{l}}_{\mathrm{TL}}L_{{t}+1}\right)}^{\omega }{\mathrm{TY}}_{{t}+1}^{\omega -1}}\left\{\omega {\mathrm{AC}}_{0}{\mathrm{AC}}_{{t}+1}^{\theta }{\left({{l}}_{\mathrm{TL}}{\mathrm{TY}}_{{t}+1}\right)}^{\omega }L_{{t}+1}^{\omega -1}\right\}+\frac{\mathrm{AA}}{\mathrm{BB}}*\left\{L_{0}\left({\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}\right){\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}}A_{{t}+1}^{{\varepsilon }_{1}}K_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{{l}}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }L_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}-1}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }}+1\right\}=\frac{\mathrm{CC}}{\mathrm{DD}}$$
(67)
$$\mathrm{AA} =-\beta \frac{C_{{t}+1}^{-\sigma }}{L_{{t}+1}^{1-\sigma }}\left\{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)\left(A_{{t}+1}K_{{t}+1}^{\alpha }{\left({{l}}_{\mathrm{PL}}L_{{t}+1}\right)}^{1-\alpha -\gamma }\right)\gamma {\mathrm{FE}}_{{t}+1}^{\rho -1}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma }{\rho }-1}-\frac{\vartheta }{\varphi }{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta -1}\left(A_{{t}+1}K_{{t}+1}^{\alpha }{\left({{l}}_{\mathrm{PL}}L_{{t}+1}\right)}^{1-\alpha -\gamma }\right){\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma }{\rho }}-\left({\mathrm{P}}_{0}+{\mathrm{P}}_{1}{\left(\sum_{{i}=1}^{{t}+1}\frac{{\mathrm{FE}}_{{i}}}{\overline{\mathrm{FE}} }\right)}^{{\mathrm{P}}_{2}}+{\mathrm{P}}_{3}{\left(\frac{{\mathrm{FE}}_{{t}+1}}{\overline{\mathrm{CTE}} }\right)}^{{\mathrm{P}}_{4}}+(\frac{{\mathrm{P}}_{1}{\mathrm{P}}_{2}}{\overline{\mathrm{FE}} }{\left(\sum_{{i}=1}^{{t}+1}\frac{{\mathrm{FE}}_{{i}}}{\overline{\mathrm{FE}} }\right)}^{{\mathrm{P}}_{2}-1}+\frac{{\mathrm{P}}_{3}{\mathrm{P}}_{4}}{\overline{\mathrm{CTE}} }{(\frac{{\mathrm{FE}}_{{t}+1}}{\overline{\mathrm{CTE}} })}^{{\mathrm{P}}_{4}-1}){\mathrm{FE}}_{{t}+1}\right)\right\}$$
$$\mathrm{BB}=\left\{L_{0}{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}}A_{{t}+1}^{{\varepsilon }_{1}}K_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{{l}}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }L_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}\gamma {\varepsilon }_{1}{\mathrm{FE}}_{{t}+1}^{\rho -1}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }-1}-L_{0}\frac{\vartheta {\varepsilon }_{1}}{\varphi }{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta -1}{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}-1}A_{{t}+1}^{{\varepsilon }_{1}}K_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{{l}}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }L_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }}\right\}$$
$$\mathrm{CC}=-\frac{C_{t}^{-\sigma }}{L_{t}^{1-\sigma }}\left\{\left(1-{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta }\right)\left(A_{t}K_{t}^{\alpha }{\left({{l}}_{\mathrm{PL}}L_{t}\right)}^{1-\alpha -\gamma }\right)\gamma {\mathrm{FE}}_{t}^{\rho -1}{\left({\left({\mathrm{AC}}_{t}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{t}^{\rho }\right)}^{\frac{\gamma }{\rho }-1}-\frac{\vartheta }{\varphi }{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta -1}\left(A_{t}K_{t}^{\alpha }{\left({{l}}_{\mathrm{PL}}L_{t}\right)}^{1-\alpha -\gamma }\right){\left({\left({\mathrm{AC}}_{t}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{t}^{\rho }\right)}^{\frac{\gamma }{\rho }}-\left({\mathrm{P}}_{0}+{\mathrm{P}}_{1}{\left(\sum_{{i}=1}^{{t}}\frac{{\mathrm{FE}}_{{i}}}{\overline{\mathrm{FE}} }\right)}^{{\mathrm{P}}_{2}}+{\mathrm{P}}_{3}{\left(\frac{{\mathrm{FE}}_{t}}{\overline{\mathrm{CTE}} }\right)}^{{\mathrm{P}}_{4}}+(\frac{{\mathrm{P}}_{1}{\mathrm{P}}_{2}}{\overline{\mathrm{FE}} }{\left(\sum_{{i}=1}^{{t}}\frac{{\mathrm{FE}}_{{i}}}{\overline{\mathrm{FE}} }\right)}^{{\mathrm{P}}_{2}-1}+\frac{{\mathrm{P}}_{3}{\mathrm{P}}_{4}}{\overline{\mathrm{CTE}} }{\left(\frac{{\mathrm{FE}}_{t}}{\overline{\mathrm{CTE}} }\right)}^{{\mathrm{P}}_{4}-1}){\mathrm{FE}}_{t}\right)\right\}$$
$$\mathrm{DD}=\left\{L_{0}{\left(1-{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}}A_{t}^{{\varepsilon }_{1}}K_{t}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{{l}}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }L_{t}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}\gamma {\varepsilon }_{1}{\mathrm{FE}}_{t}^{\rho -1}{\left({\left({\mathrm{AC}}_{t}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{t}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }-1}-L_{0}\frac{\vartheta {\varepsilon }_{1}}{\varphi }{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta -1}{\left(1-{\frac{{\mathrm{FE}}_{t}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}-1}A_{t}^{{\varepsilon }_{1}}K_{t}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{{l}}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }L_{t}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}\right\}$$

And the above equation, when there is no fossil fuel energy left to use, is:

$$-{\beta }^{2}{C}_{{t}+1}^{1-\sigma }{L}_{{t}+1}^{\sigma -2}+ {\beta }^{2}\frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}\left\{\left(1-\alpha -\gamma \right)\left({A}_{{t}+1}{{K}}_{{t}+1}^{\alpha }{\left({I}_{\mathrm{PL}}\right)}^{1-\alpha -\gamma }{\left({L}_{{t}+1}\right)}^{-\alpha -\gamma }\right){\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\gamma }\right\}+ \frac{{\beta }^{2}\frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}}{\omega {\mathrm{AC}}_{0}{\mathrm{AC}}_{{t}+1}^{\theta }{\left({I}_{\mathrm{TL}}{L}_{{t}+1}\right)}^{\omega }{\mathrm{TY}}_{{t}+1}^{\omega -1}}\left\{\omega {\mathrm{AC}}_{0}{\mathrm{AC}}_{{t}+1}^{\theta }{\left({I}_{\mathrm{TL}}{\mathrm{TY}}_{{t}+1}\right)}^{\omega }{L}_{{t}+1}^{\omega -1}\right\}+\frac{\beta \frac{{C}_{t}^{-\sigma }}{{L}_{t}^{1-\sigma }}- {\beta }^{2}\frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}(\alpha \left({A}_{{t}+1}{{K}}_{{t}+1}^{\alpha -1}{\left({I}_{\mathrm{PL}}{L}_{{t}+1}\right)}^{1-\alpha -\gamma }\right){\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\gamma }+1-\updelta )}{(\alpha {\varepsilon }_{1}-{\varepsilon }_{2}){L}_{0}{A}_{{t}+1}^{{\varepsilon }_{1}}{{K}}_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}-1}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}{\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\gamma {\varepsilon }_{1}}}*\left\{{L}_{0}\left({\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}\right){A}_{{t}+1}^{{\varepsilon }_{1}}{{K}}_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}-1}{\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\gamma {\varepsilon }_{1}}+1\right\}=\frac{ \frac{{C}_{{t}-1}^{-\sigma }}{{L}_{{t}-1}^{1-\sigma }}- \beta \frac{{C}_{t}^{-\sigma }}{{L}_{t}^{1-\sigma }}(\alpha \left({A}_{t}{{K}}_{t}^{\alpha -1}{\left({I}_{\mathrm{PL}}{L}_{t}\right)}^{1-\alpha -\gamma }\right){\left({\mathrm{AC}}_{t}\mathrm{CE}\right)}^{\gamma }+1-\updelta )}{(\alpha {\varepsilon }_{1}-{\varepsilon }_{2}){L}_{0}{A}_{t}^{{\varepsilon }_{1}}{{K}}_{t}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}-1}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{t}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}{\left({\mathrm{AC}}_{t}\mathrm{CE}\right)}^{\gamma {\varepsilon }_{1}}}$$
(68)
$$\beta \frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}\left\{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)\alpha \left({A}_{{t}+1}{{K}}_{{t}+1}^{\alpha -1}{\left({I}_{\mathrm{PL}}{L}_{{t}+1}\right)}^{1-\alpha -\gamma }\right){\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma }{\rho }}+1-\updelta \right\}+\left(\frac{\mathrm{EE}}{\mathrm{FF}}\right)\{(\alpha {\varepsilon }_{1}-{\varepsilon }_{2}){L}_{0}{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}}{A}_{{t}+1}^{{\varepsilon }_{1}}{{K}}_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}-1}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }}=\frac{{C}_{t}^{-\sigma }}{{L}_{t}^{1-\sigma }}$$
(69)
$$\mathrm{EE}=-\beta \frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}\left\{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)\left({A}_{{t}+1}{{K}}_{{t}+1}^{\alpha }{\left({I}_{\mathrm{PL}}{L}_{{t}+1}\right)}^{1-\alpha -\gamma }\right)\gamma {\mathrm{FE}}_{{t}+1}^{\rho -1}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma }{\rho }-1}-\frac{\vartheta }{\varphi }{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta -1}\left({A}_{{t}+1}{{K}}_{{t}+1}^{\alpha }{\left({I}_{\mathrm{PL}}{L}_{{t}+1}\right)}^{1-\alpha -\gamma }\right){\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma }{\rho }}-\left({\mathrm{P}}_{0}+{\mathrm{P}}_{1}{\left(\sum_{\mathrm{i}=1}^{{t}+1}\frac{{\mathrm{FE}}_{\mathrm{i}}}{\overline{\mathrm{FE}} }\right)}^{{\mathrm{P}}_{2}}+{\mathrm{P}}_{3}{\left(\frac{{\mathrm{FE}}_{t}}{\overline{\mathrm{CTE}} }\right)}^{{\mathrm{P}}_{4}}+(\frac{{\mathrm{P}}_{1}{\mathrm{P}}_{2}}{\overline{\mathrm{FE}} }{\left(\sum_{\mathrm{i}=1}^{{t}+1}\frac{{\mathrm{FE}}_{\mathrm{i}}}{\overline{\mathrm{FE}} }\right)}^{{\mathrm{P}}_{2}-1}+\frac{{\mathrm{P}}_{3}{\mathrm{P}}_{4}}{\overline{\mathrm{CTE}} }{\left(\frac{{\mathrm{FE}}_{t}}{\overline{\mathrm{CTE}} }\right)}^{{\mathrm{P}}_{4}-1}){\mathrm{FE}}_{{t}+1}\right)\right\}$$
$$\mathrm{FF}=\left\{{L}_{0}{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}}{A}_{{t}+1}^{{\varepsilon }_{1}}{{K}}_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}\gamma {\varepsilon }_{1}{\mathrm{FE}}_{{t}+1}^{\rho -1}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }-1}-{L}_{0}\frac{\vartheta {\varepsilon }_{1}}{\varphi }{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta -1}{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}-1}{A}_{{t}+1}^{{\varepsilon }_{1}}{{K}}_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }}\right\}$$
$$\beta \frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}\left\{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right){A}_{{t}+1}{{K}}_{{t}+1}^{\alpha }{\left({I}_{\mathrm{PL}}{L}_{{t}+1}\right)}^{1-\alpha -\gamma }\gamma {\mathrm{CE}}^{\rho }{\mathrm{AC}}_{{t}+1}^{\rho -1}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma }{\rho }-1}\right\}+\frac{\beta \frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}}{\omega {\mathrm{AC}}_{0}{\mathrm{AC}}_{{t}+1}^{\theta }{\left({I}_{\mathrm{TL}}{L}_{{t}+1}\right)}^{\omega }{\mathrm{TY}}_{{t}+1}^{\omega -1}}\left\{\theta {\mathrm{AC}}_{0}{\mathrm{AC}}_{{t}+1}^{\theta -1}{\left({I}_{\mathrm{TL}}{L}_{{t}+1}{\mathrm{TY}}_{{t}+1}\right)}^{\omega }\right\}+\left(\frac{\mathrm{GG}}{\mathrm{HH}}\right)\{\gamma {\varepsilon }_{1}{\mathrm{CE}}^{\rho }{\mathrm{AC}}_{{t}+1}^{\rho -1}{L}_{0}{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}}{A}_{{t}+1}^{{\varepsilon }_{1}}{{K}}_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }-1}\}=\frac{\frac{{C}_{t}^{-\sigma }}{{L}_{t}^{1-\sigma }}}{\omega {\mathrm{AC}}_{0}{\mathrm{AC}}_{t}^{\theta }{\left({I}_{\mathrm{TL}}{L}_{t}\right)}^{\omega }{\mathrm{TY}}_{t}^{\omega -1}}$$
(70)
$$\mathrm{GG}=-\beta \frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}\left\{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)\left({A}_{{t}+1}{{K}}_{{t}+1}^{\alpha }{\left({I}_{\mathrm{PL}}{L}_{{t}+1}\right)}^{1-\alpha -\gamma }\right)\gamma {\mathrm{FE}}_{{t}+1}^{\rho -1}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {}_{1}}{\rho }-1}-\frac{\vartheta }{\varphi }{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta -1}\left({A}_{{t}+1}{{K}}_{{t}+1}^{\alpha }{\left({I}_{\mathrm{PL}}{L}_{{t}+1}\right)}^{1-\alpha -\gamma }\right){\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {}_{1}}{\rho }}-\left({\mathrm{P}}_{0}+{\mathrm{P}}_{1}{\left(\sum_{\mathrm{i}=1}^{{t}+1}\frac{{\mathrm{FE}}_{\mathrm{i}}}{\overline{\mathrm{FE}} }\right)}^{{\mathrm{P}}_{2}}+{\mathrm{P}}_{3}{\left(\frac{{\mathrm{FE}}_{t}}{\overline{\mathrm{CTE}} }\right)}^{{\mathrm{P}}_{4}}+(\frac{{\mathrm{P}}_{1}{\mathrm{P}}_{2}}{\overline{\mathrm{FE}} }{\left(\sum_{\mathrm{i}=1}^{{t}+1}\frac{{\mathrm{FE}}_{\mathrm{i}}}{\overline{\mathrm{FE}} }\right)}^{{\mathrm{P}}_{2}-1}+\frac{{\mathrm{P}}_{3}{\mathrm{P}}_{4}}{\overline{\mathrm{CTE}} }{\left(\frac{{\mathrm{FE}}_{t}}{\overline{\mathrm{CTE}} }\right)}^{{\mathrm{P}}_{4}-1}){\mathrm{FE}}_{{t}+1}\right)\right\}$$
$$\mathrm{HH}=\left\{{L}_{0}{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}}{A}_{{t}+1}^{{\varepsilon }_{1}}{{K}}_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}\gamma {\varepsilon }_{1}{\mathrm{FE}}_{{t}+1}^{\rho -1}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }-1}-{L}_{0}\frac{\vartheta {\varepsilon }_{1}}{\varphi }{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta -1}{\left(1-{\frac{{\mathrm{FE}}_{{t}+1}}{\varphi }}^{\vartheta }\right)}^{{\varepsilon }_{1}-1}{A}_{{t}+1}^{{\varepsilon }_{1}}{{K}}_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}{\left({\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\rho }+{\mathrm{FE}}_{{t}+1}^{\rho }\right)}^{\frac{\gamma {\varepsilon }_{1}}{\rho }}\right\}$$

And the above equation, when there is no fossil fuel energy left to use, will be:

$$\beta \frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}\left\{{A}_{{t}+1}{{K}}_{{t}+1}^{\alpha }{\left({I}_{\mathrm{PL}}{L}_{{t}+1}\right)}^{1-\alpha -\gamma }{\gamma {\rm CE}}{\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\gamma -1}\right\}+\frac{\beta \frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}}{\omega {\mathrm{AC}}_{0}{\mathrm{AC}}_{{t}+1}^{\theta }{\left({I}_{\mathrm{TL}}{L}_{{t}+1}\right)}^{\omega }{\mathrm{TY}}_{{t}+1}^{\omega -1}}\left\{\theta {\mathrm{AC}}_{0}{\mathrm{AC}}_{{t}+1}^{\theta -1}{\left({I}_{\mathrm{TL}}{L}_{{t}+1}{\mathrm{TY}}_{{t}+1}\right)}^{\omega }\right\}+\frac{\beta \frac{{C}_{t}^{-\sigma }}{{L}_{t}^{1-\sigma }}- {\beta }^{2}\frac{{C}_{{t}+1}^{-\sigma }}{{L}_{{t}+1}^{1-\sigma }}(\alpha \left({A}_{{t}+1}{{K}}_{{t}+1}^{\alpha -1}{\left({I}_{\mathrm{PL}}{L}_{{t}+1}\right)}^{1-\alpha -\gamma }\right){\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\gamma }+1-\updelta )}{(\alpha {\varepsilon }_{1}-{\varepsilon }_{2}){L}_{0}{A}_{{t}+1}^{{\varepsilon }_{1}}{{K}}_{{t}+1}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}-1}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{{t}+1}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}{\left({\mathrm{AC}}_{{t}+1}\mathrm{CE}\right)}^{\gamma {\varepsilon }_{1}}}*(\gamma {\varepsilon }_{1}{L}_{0}{A}_{t}^{{\varepsilon }_{1}}{{K}}_{t}^{\alpha {\varepsilon }_{1}-{\varepsilon }_{2}}{I}_{\mathrm{PL}}^{{\varepsilon }_{1}-\alpha {\varepsilon }_{1}-{\varepsilon }_{1}\gamma }{L}_{t}^{{\varepsilon }_{2}-\alpha {\varepsilon }_{1}-\gamma {\varepsilon }_{1}}{\mathrm{CE}}^{\gamma {\varepsilon }_{1}}{\mathrm{AC}}_{t}^{\gamma {\varepsilon }_{1}-1})=\frac{\frac{{C}_{t}^{-\sigma }}{{L}_{t}^{1-\sigma }}}{\omega {\mathrm{AC}}_{0}{\mathrm{AC}}_{t}^{\theta }{\left({I}_{\mathrm{TL}}{L}_{t}\right)}^{\omega }{\mathrm{TY}}_{t}^{\omega -1}}$$
(71)

3.3 Solving the market-based F.O.C

Solving the first-order conditions for households, we get:

$$\left\{ {c_{t} } \right\}: \beta^{t} \frac{{C_{t}^{ - \sigma } }}{{L_{t}^{1 - \sigma } }} = \lambda_{1t}$$
(72)
$$\left\{ {K_{t + 1} } \right\}: \lambda_{1t} = \left( {1 + r_{t + 1} } \right)\lambda_{1t + 1}$$
(73)
$$\left\{ {L_{t + 1} } \right\}: \beta^{t + 1} \frac{{C_{t + 1}^{1 - \sigma } }}{{L_{t + 1}^{2 - \sigma } }} = \lambda_{1t + 1} w_{t + 1} - \lambda_{2t} + \lambda_{2t + 1} \left( {1 + \overline{L}} \right)$$
(74)

And when the population grows endogenously, we have the below F.O.C:

$$\left\{ {K_{t + 1} } \right\}: \lambda_{1t} = \left( {1 + r_{t + 1} } \right)\lambda_{1t + 1} - \lambda_{2t + 1} \varepsilon_{2} L_{0} L_{t + 1}^{{\varepsilon_{2} - \varepsilon_{1} }} Y_{t + 1}^{{\varepsilon_{1} }} K_{t + 1}^{{ - \varepsilon_{2} - 1}}$$
(75)
$$\left\{ {L_{t + 1} } \right\}: \beta^{t + 1} \frac{{C_{t + 1}^{1 - \sigma } }}{{L_{t + 1}^{2 - \sigma } }} = \lambda_{1t + 1} w_{t + 1} - \lambda_{2t} + \lambda_{2t + 1} \left( {1 + L_{0} \left( {\varepsilon_{2} - \varepsilon_{1} } \right)Y_{t + 1}^{{\varepsilon_{1} }} K_{t + 1}^{{ - \varepsilon_{2} }} L_{t + 1}^{{\varepsilon_{2} - \varepsilon_{1} - 1}} } \right)$$
(76)

Updating and substituting Eqs. (72) in (73), (74), (75), (76) we derive the Euler equations for households for both cases:

$$\frac{{C_{t}^{ - \sigma } }}{{L_{t}^{1 - \sigma } }} = \beta \left( {1 + r_{t + 1} } \right)\frac{{C_{t + 1}^{ - \sigma } }}{{L_{t + 1}^{1 - \sigma } }}\,\, \left( {{\text{Population}}\,{\text{ is}}\,{\text{ exogenous}}} \right)$$
(77)
$$\begin{aligned} \beta^{2} \frac{{C_{t + 1}^{1 - \sigma } }}{{L_{t + 1}^{2 - \sigma } }} & = \beta^{2} \frac{{C_{t + 1}^{ - \sigma } }}{{L_{t + 1}^{1 - \sigma } }}w_{t + 1} - \frac{{\left[ {\left( {1 + r_{t} } \right)\beta \frac{{C_{t}^{ - \sigma } }}{{L_{t}^{1 - \sigma } }} - \frac{{C_{t - 1}^{ - \sigma } }}{{L_{t - 1}^{1 - \sigma } }}} \right]}}{{\left[ {\varepsilon_{2} L_{0} L_{t}^{{\varepsilon_{2} - \varepsilon_{1} }} Y_{t}^{{\varepsilon_{1} }} K_{t}^{{ - \varepsilon_{2} - 1}} } \right]}} \\ & \,\,\,\,\,\,\, + \frac{{\left[ {\left( {1 + r_{t + 1} } \right)\beta^{2} \frac{{C_{t + 1}^{ - \sigma } }}{{L_{t + 1}^{1 - \sigma } }} - \beta \frac{{C_{t}^{ - \sigma } }}{{L_{t}^{1 - \sigma } }}} \right]}}{{\left[ {\varepsilon_{2} L_{0} L_{t + 1}^{{\varepsilon_{2} - \varepsilon_{1} }} Y_{t + 1}^{{\varepsilon_{1} }} K_{t + 1}^{{ - \varepsilon_{2} - 1}} } \right]}}\left( {1 + L_{0} \left( {\varepsilon_{2} - \varepsilon_{1} } \right)Y_{t + 1}^{{\varepsilon_{1} }} K_{t + 1}^{{ - \varepsilon_{2} }} L_{t + 1}^{{\varepsilon_{2} - \varepsilon_{1} - 1}} } \right) \\ & \,\,\,\,\,\,\,\left( {{\text{Population}}\,{\text{is}}\,{\text{endogenous}}} \right) \\ \end{aligned}$$
(78)

Solving the first-order conditions for the final good market, we have:

$$\left\{ {{\rm KY}_{t} } \right\}: \alpha {\rm EDA}_{t} {\rm KY}_{t}^{\alpha - 1} {\rm PL}_{t}^{1 - \alpha - \gamma } \left( {{\rm CE}_{t}^{\rho } + {\rm FE}_{t}^{\rho } } \right)^{{\frac{\gamma }{\rho }}} = r_{t} + \delta$$
(79)
$$\left\{ {{\rm PL}_{t} } \right\}:\left( {1 - \alpha - \gamma } \right){\rm EDA}_{t} {\rm KY}_{t}^{\alpha } {\rm PL}_{t}^{ - \alpha - \gamma } \left( {{\rm CE}_{t}^{\rho } + {\rm FE}_{t}^{\rho } } \right)^{{\frac{\gamma }{\rho }}} = w_{t}$$
(80)
$$\left\{ {{\rm FE}_{t} } \right\}:\gamma {\rm EDA}_{t} {\rm KY}_{t}^{\alpha } {\rm PL}_{t}^{1 - \alpha - \gamma } {\rm FE}_{t}^{\rho - 1} \left( {{\rm CE}_{t}^{\rho } + {\rm FE}_{t}^{\rho } } \right)^{{\frac{\gamma }{\rho } - 1}} = P_{{{\text{FE}}_{t} }}$$
(81)
$$\left\{ {{\rm CE}_{t} } \right\}:\gamma {\rm EDA}_{t} {\rm KY}_{t}^{\alpha } {\rm PL}_{t}^{1 - \alpha - \gamma } {\rm CE}_{t}^{\rho - 1} \left( {{\rm CE}_{t}^{\rho } + {\rm FE}_{t}^{\rho } } \right)^{{\frac{\gamma }{\rho } - 1}} = P_{{{\text{CE}}_{t} }}$$
(82)

In the end, the F.O.Cs for the energy sector are:

$$\begin{aligned} \left\{ {{\rm FE}_{t} } \right\} & : P_{0} + P_{1} \left( {\frac{{\mathop \sum \nolimits_{i = 1}^{t} {\rm FE}_{i} }}{{\overline{{\rm FE}} }}} \right)^{{P_{2} }} + P_{3} \left( {\frac{{{\rm FE}_{t} }}{{\overline{{\rm CTE}} }}} \right)^{{P_{4} }} \\ & \,\,\,\,\, + \left( {\frac{{P_{1} P_{2} }}{{\overline{{\rm FE}} }}\left( {\frac{{\mathop \sum \nolimits_{i = 1}^{t} {\rm FE}_{i} }}{{\overline{{\rm FE}} }}} \right)^{{P_{2} - 1}} + \frac{{P_{3} P_{4} }}{{\overline{{\rm CTE}} }}\left( {\frac{{{\rm FE}_{t} }}{{\overline{{\rm CTE}} }}} \right)^{{P_{4} - 1}} } \right){\rm FE}_{t} = P_{FEt} \\ \end{aligned}$$
(83)
$$\left\{ {{\rm TL}_{t} } \right\}: \lambda_{t} \omega {\rm AC}_{0} {\rm AC}_{t}^{\theta } {\rm TY}_{t} \left( {{\rm TL}_{t} {\rm TY}_{t} } \right)^{\omega - 1} = \beta^{t} w_{t}$$
(84)
$$\left\{ {{\rm TY}_{t} } \right\}: \lambda_{t} \omega {\rm AC}_{0} {\rm AC}_{t}^{\theta } {\rm TL}_{t} \left( {{\rm TL}_{t} {\rm TY}_{t} } \right)^{\omega - 1} = \beta^{t} r_{t}$$
(85)
$$\left\{ {{\rm AC}_{t + 1} } \right\}: \lambda_{t} - \lambda_{t + 1} {\rm AC}_{0} {\rm AC}_{t}^{\theta } \left( {{\rm TL}_{t} {\rm TY}_{t} } \right)^{\omega } = \beta^{t + 1} {\rm CE}*P_{{\rm CE}_{t + 1}}$$
(86)

Combining Eqs. (84) and (85), we get:

$${\rm TY}_{t} = \frac{{w_{t} }}{{r_{t} }}{\rm TL}_{t}$$
(87)

Updating and substituting Eqs. (87) into (86), we get another Euler equation for the Energy sector:

$$\frac{{w_{t} }}{{\omega {\rm AC}_{0} {\rm AC}_{t}^{\theta } {\rm TY}_{t} \left( {{\rm TL}_{t} {\rm TY}_{t} } \right)^{\omega - 1} }} - \beta {\rm CE}*P_{{\rm CE}_{t + 1}} = \frac{{\beta w_{t + 1} }}{{\omega {\rm AC}_{t + 1}^{\theta } {\rm TY}_{t + 1} \left( {{\rm TL}_{t + 1} {\rm TY}_{t + 1} } \right)^{\omega - 1} }}{\rm AC}_{t}^{\theta } \left( {{\rm TL}_{t} {\rm TY}_{t} } \right)^{\omega }$$
(88)

Using Eqs. (81) and (83), we derive the price and the amount of fossil fuel energy.

Appendix 4: Altering the population growth

One would argue that the U.S. population grows around 1%, whereas, in the proposed model it converges to zero. Because of this, I have used different parameterization for Eq. (15) \(\left( {L_{t + 1} = L_{t} + L_{0} \left( {\frac{{Y_{t} }}{{L_{t} }}} \right)^{{\varepsilon_{1} }} \left( {\frac{{L_{t} }}{{K_{t} }}} \right)^{{\varepsilon_{2} }} } \right)\), to see if 1% growth rate in population is achievable using the current setup. As it is shown in figure below, a population can grow faster in the observed period’s early stages; however, it tends to drop toward the end. While the proposed model is well-fitted in Japan and Western European countries, we need to change the value of the parameters in Eq. (15) (\(\varepsilon_{1} = 1.72 \to 1.8\), \(\varepsilon_{2} = 2.18 \to 2.1\) and \(L_{0} = 2.35 \to 12.35\)) to capture the growth rate in population for US.

For the case of the US, I can think of a plausible argument. If we deduct US immigration rate (including immigrants’ descendants, although they might be the U.S.-born), the population growth would be much lower than the current rate. Although the counter argument would be that they still participate in the economy, however, they are not born in that economy but are brought in. The proposed model shows a high growth rate in early stages, so we can think about the entrance of immigrants with the high rate of population which tends to converge to its steady state (Fig.

Fig. 7
figure 7

Population and economic growth for two different scenarios of population growth. The blue lines show the base model scenario in which population grows at 0.02% rate. The red lines match the U.S. population growth which is about 0.6% on average. The social planner solution has been applied for both models

7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhidi, F. Impact of fossil fuel transition and population expansion on economic growth. Environ Dev Sustain 25, 2571–2609 (2023). https://doi.org/10.1007/s10668-022-02122-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02122-y

Keywords

JEL Classification

Navigation